Kinetics of interaction of Co–Cu melts with graphite and microstructure of forming metal-carbon compositions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The time dependences of the contact angle and the wetted surface spot diameter were measured during the interaction of Co–Cu melts with copper contents of 20, 40 and 60 at. % with graphite at temperatures of 1390, 1440, 1490, 1540 and 1590°C. Wetting of graphite by Co–Cu melts does not occur under these conditions: the final contact angle for Co80–Cu20 is 95°, Co60–Cu40 is 110°, Co40–Cu60 is 100°. The final value of the diameter of the wetted surface spot increases somewhat. Metallographic analysis of the microstructure of Co–Cu–C composite materials obtained by contact alloying of Co–Cu melts with carbon showed the dependence of the morphology of the structural components and the phase composition of the samples on the copper content. Composite materials (Co–27%C–10%Cu) + (Co–32%C–62%Cu) + C and (Co–19%C–15%Cu) + (Co–25%C–72%Cu) + C, obtained by the interaction of Co–Cu melts with a copper content of 20, 40 at. % with graphite, have a macro-homogeneous structure.

全文:

受限制的访问

作者简介

О. Chikova

ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

编辑信件的主要联系方式.
Email: O.A.Chikova@urfu.ru
俄罗斯联邦, 620062, Екатеринбург, ул. Мира, 19

I. Shirinkina

ФГБУН Институт физики металлов имени М.Н. Михеева УрО РАН

Email: O.A.Chikova@urfu.ru
俄罗斯联邦, 620137, Екатеринбург, ул. С. Ковалевской, 18

V. Tsepelev

ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Email: O.A.Chikova@urfu.ru
俄罗斯联邦, 620062, Екатеринбург, ул. Мира, 19

N. Sinitsin

ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Email: O.A.Chikova@urfu.ru
俄罗斯联邦, 620062, Екатеринбург, ул. Мира, 19

V. Vyukhin

ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Email: O.A.Chikova@urfu.ru
俄罗斯联邦, 620062, Екатеринбург, ул. Мира, 19

参考

  1. Nishizawa T., Ishida K. The Co-Cu (Cobalt-Copper) system // Bull. Alloy phase diagr. 1984. V. 5. P. 161–165. https://doi.org/10.1007/BF02868953
  2. Guo F., Lu T., Qin J., Zheng H., Tian X. Abnormal resistivity behavior of Cu–Ni and Cu–Co alloys in undercooled liquid state // Phys. B. 2012. V. 407. P. 4108–4113. https://doi.org/10.1016/j.physb.2012.06.024
  3. Yamauchi I., Ueno N., Shimaoka M., Ohnaka I. Undercooling in Co–Cu alloys and its effect on solidification structure // J. Mater. Sci. 1998. V. 33. P. 371–378. https://doi.org/10.1023/A:1004319829612
  4. Robinson M.B., Li D., Rathz T.J., Williams G. Undercooling, liquid separation and solidification of Cu–Co alloys // J. Mater. Sci. 1999. V. 34. P. 3747–3753. https://doi.org/10.1023/A:1004688313591
  5. Lu X.Y., Cao C.D., Kolbe M., Wei B., Herlach D.M. Microstructure analysis of Co–Cu alloys undercooled prior to solidification // Mater. Sci. Eng. A. 2004. V. 375–377. P. 1101–1104. https://doi.org/10.1016/j.msea.2003.10.106
  6. Yang W., Chen S.H., Yu H., Li S., Liu F., Yang G.C. Effects of liquid separation on the microstructure formation and hardness behavior of undercooled Cu–Co alloy // Appl. Phys. A. 2012. V. 109. P. 665–671. https://doi.org/10.1007/s00339-012-7090-4
  7. Munitz A., Venkert A., Landau P., Kaufman M.J., Abbaschian R. Microstructure and phase selection in supercooled copper materials showing metastable liquid miscibility gap // J. Mater. Sci. 2012. V. 47. P. 7955–7970. https://doi.org/10.1007/s10853-012-6354-x
  8. Munitz A., Abbaschian R. Microstructure of Cu-Co alloys solidified at various supercoolings // Metall Mater Trans A. 1996. V. 27. P. 4049–4059. https://doi.org/10.1007/BF02595654
  9. Zhao D., Gao J. Liquid phase separation in undercooled Cu–Co alloys under the influence of static magnetic fields // Philosophical Transactions A. 2019. V. 377. P. 20180207. https://doi.org/10.1098/rsta.2018.0207
  10. Zhao D., Liu R., Wu D., Bo L., Wang L. Liquid-liquid phase separation and solidification behavior of Al-Bi-Sb immiscible alloys // Results in Physics. 2017. V. 7. P. 3216–3221. https://doi.org/10.1016/j.rinp.2017.08.056
  11. Авраамов Ю.С., Кошкин В.И., Петрищев И.М., Шляпин А.Д. Получение сплавов на основе систем несмешивающихся компонентов методом контактного легирования // Машиностр. инжен. образов. 2007. № 4. С. 21–30.
  12. Бродова И.Г., Чикова О.А., Витюнин М.А., Яблонских Т.И., Ширинкина И.Г., Астафьев В.В. Структура сплавов Fe-Cu-С, полученных способом контактного легирования // Физ. мет. металловед. 2009. Т. 108. № 6. С. 626–632.
  13. Чикова О.А., Витюнин М.А., Ченцов В.П., Сакун Г.В. Расслоение расплавов Fe–Cu при смачивании графита // Коллоид. журн. 2010. Т. 72. № 2. С. 251–257.
  14. Song Z., Liu X., Sun X. et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance // Carbon. 2019. V. 151. P. 36. https://doi.org/10.1016/j.carbon.2019.05.025
  15. Sugime H., D’Arsiè L., Esconjauregui S. et al. Low temperature growth of fully covered single-layer graphene using CoCu catalyst // Nanoscale. 2017. V. 9. № 38. P. 14467–14475. https://doi.org/10.1039/C7NR02553J
  16. Fan X., Mashimo T., Huang X. et al. Magnetic properties of Co-Cu metastable solid solution alloys // Phys. Rev. B. 2004. V. 69. P. 094432. https://doi.org/10.1103/PhysRevB.69.094432
  17. Weatherup R.S., D’Arsié L., Cabrero-Vilatela A. et al. Long-term passivation of strongly interacting metals with single-layer graphene // J. Am.Chem. Soc. 2015 V. 137. № 45. P. 14358–14366. https://doi.org/10.1021/jacs.5b08729
  18. Karpan V.M., Khomyakov P.A., Starikov G. et al. Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene // Phys. Rev. B: Condens.Matter. 2008. V. 78. P. 195419. https://doi.org/10.1103/PhysRevB.78.195419
  19. Wan Y., Xiao J., Li Ch. et al. Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies // J. Magn.Magn. Mater. 2016. V. 399. P. 252–259. https://doi.org/10.1016/j.jmmm.2015.10.006
  20. Кютт Р.Н., Данишевский А.М., Сморгонская Э.А. и др. Рентгенодифракционное исследование структуры нанопористого углерода, полученного из карбидных материалов //Физ. тех. полупроводников. 2003. Т. 37. № 7. С. 811–815.
  21. Дзидзигури Э.Л., Сидорова Е.Н., Багдасарова К.А., Земцов Л.М., Карпачева Г.П. Формирование наночастиц Co в металл-углеродных композитах // Кристаллография. 2008. Т. 53. № 2. С. 342–345.
  22. Домоновa Д.П., Печенюкa С.И., Семушина Ю.П. Термическое разложение двойного салицилатного комплекса Со–Cu в атмосфере аргона с получением металл-углеродных композиций // Ж. неорг. химии. 2022. Т. 67. № 4. С. 540–544. https://doi.org/10.31857/S0044457X22040043
  23. Fan X., Mashimo T., Huang X. et al. Magnetic properties of Co-Cu metastable solid solution alloys // Phys. Rev. B. 2004. V. 69, P. 094432. https://doi.org/10.1103/PhysRevB.69.094432
  24. Childress J.R., Chien C.L. Reentrant magnetic behavior in FCC Co-Cu alloys // Phys. Rev. B. 1991. V. 43. P. 8089. https://doi.org/10.1103/PhysRevB.43.8089
  25. Jegede, O.E., Cochrane, R.F., Mullis, A.M. Metastable monotectic phase separation in Co–Cu alloys // J. Mater. Sci. 2018. V. 53. № 16. P. 11749–11764. https://doi.org/10.1007/s10853-018-2417-y
  26. Диаграммы состояния двойных металлических систем: справочник: в 3-х т. / ред. Н.П. Лякишев. Москва: Машиностроение, 1996. Т. 1. 1996. 991 с.
  27. Тучинский Л.И. Композиционные материалы, получаемые методом пропитки. Москва: Металлургия. 1986. 206 с.
  28. Найдич Ю.В., Колесниченко Г.А. Взаимодействие металлических расплавов с поверхностью алмаза и графита. Киев: Наукова думка. 1967. 89 c.
  29. Nikonova R.M., Lad‘yanov V.V. Contact interaction of metal melts with fullerite and graphite // J. Mater. Res. Technol. 2020. V. 9. № 6. P. 12559–12567. https://doi.org/10.1016/j.jmrt.2020.09.001
  30. Tamai Y., Aratani K. Experimental study of the relation between contact angle and surface roughness // J. Phys. Chem. 1972. V. 76. № 22. P. 3267–3271. https://doi.org/10.1021/j100666a026
  31. Mortimer D.A., Nicholas M. The wetting of carbon by copper and copper alloys // J. Mater Sci. 1970. V. 5. P. 149–155. https://doi.org/10.1007/BF00554633
  32. Gulevskii V.A., Antipov V.I., Kolmakov A.G. et al. Designing of copper-based alloys for the impregnation of carbon-graphite materials // Russ. Metall. (Metally). 2012. № 3. P. 258–261. https://doi.org/10.1134/S0036029512030081
  33. Gulevskii V.A., Antipov V.I., Vinogradov L.V. et al. Effect of alloying elements on the wetting of graphitized carbon with copper alloys // Russ. Metall. 2019. № 1. P. 72–76. https://doi.org/10.1134/S0036029519010051
  34. Ishida K., Nishizawa T. The C-Co (Carbon-Cobalt) system // JPE. 1991. V. 12. P. 417–424. https://doi.org/10.1007/BF02645959
  35. Глузман Л.Д., Эдельман И.И. Лабораторный контроль коксохимического производства. Харьков: Гос. Научно-техн. Изд-во литературы по черной и цветной металлургии. 1957. 635 с.
  36. Еременко В.Н., Иванов М.И., Лукашенко Г.М. и др. Физическая химия неорганических материалов. Т. 2. Поверхностное натяжение и термодинамика металлических расплавов. Киев: Наукова думка, 1988. 192 с.
  37. Попель С. И. Поверхностные явления в расплавах. М.: Металлургия, 1994. 432 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Time dependences of graphite wetting angles θ with Co-Cu melts with Cu content of 20, 40 and 60 at. % at 1390, 1440, 1490, 1540 and 1590°C. The method of measuring θ is shown in Fig. 2a.

下载 (356KB)
3. Fig. 2. Time dependences of spot diameter of the graphite surface wetted with Co-Cu melts with 20, 40 and 60 at. % Cu content at 1390, 1440, 1490, 1540 and 1590°C.

下载 (356KB)
4. Fig. 3. Time dependences of the height h of a drop of Co-Cu melt with 20, 40 and 60 at. % Cu content at 1390, 1440, 1490, 1540 and 1590°C relative to the graphite surface.

下载 (350KB)
5. Fig. 4. General view of Co-Cu-C samples: a) Co-20%Cu-C; b) Co-40%Cu-C; c) Co-60%Cu-C.

下载 (237KB)
6. Fig. 5. Structure of Co-20%Cu-C metal-carbon material: a) Co-C eutectic; b) Cu zones in Co-C eutectic and EDS map of element distribution (SEM).

下载 (808KB)
7. Fig. 6. Structure of Co-40%Cu-C metal-carbon material: a) boundary of Co and Cu zones and Co dendrites in Cu zone; b) area at the contact point of the sample with graphite substrate; EDS-maps of element distribution (SEM).

下载 (796KB)
8. Fig. 7. Structure of metal-carbon material Co-20%Cu-C: a) Cu zone with Co dendrites; b) isolated zones of Co-C eutectic with inclusions of copper phase, EDS-maps of element distribution (SEM).

下载 (645KB)

版权所有 © Russian Academy of Sciences, 2025