A Lunar Printer Experiment on Laser Fusion of the Lunar Regolith in the Luna-Grunt Space Project

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents the results of laboratory studies on the use of a new technology of selective laser melting to obtain experimental products from the lunar regolith without special additives. The main properties of the natural regolith, which significantly affect the fusion process, are determined. The first samples of a given geometry were obtained from labradorite and gabbro-diabase powders, which are natural analogues of lunar regolith, using this technology. The research results are planned to be used in the preparation of initial data for the development of the Lunar Printer space device as part of the complex of scientific equipment of the promising lunar project Luna-Grunt.

作者简介

T. Tomilina

Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia

Email: kim@imash.ac.ru
Россия, Москва

A. Kim

Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia

Email: kim@imash.ac.ru
Россия, Москва

D. Lisov

Space Research Institute, Russian Academy of Sciences, 117997, Moscow, Russia

Email: kim@imash.ac.ru
Россия, Москва

A. Lysenko

Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, 101990, Moscow, Russia

编辑信件的主要联系方式.
Email: kim@imash.ac.ru
Россия, Москва

参考

  1. Митрофанов И.Г. Об освоении Луны. Русский космизм, лунная гонка и открытие “новой Луны” // Земля и Вселенная. 2019. № 1. С. 5–17. https://doi.org/10.7868/S0044394819010018
  2. Митрофанов И.Г., Зеленый Л.М. Об освоении Луны. Планы и ближайшие перспективы // Земля и Вселенная. 2019. № 4. С. 16–37. https://doi.org/10.7868/S0044394819040029
  3. Feldman W.C., Maurice S., Binder A.B. et al. Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles // Science. 1998. V. 281. Iss. 5382. P. 1496–1500. https://doi.org/10.1126/science.281.5382.149
  4. Pieters C.M., Goswami J.N., Clark R.N. et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1 // Science. 2009. V. 326 Iss. 5952. P. 568–572. https://doi.org/10.1126/science.1178658
  5. Mitrofanov I.G., Sanin A.B., Boynton W.V. et al. Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND // Science. 2010. V. 330. Iss. 6003. P. 483–486. https://doi.org/10.1126/science.1185696
  6. Colaprete A., Schultz P., Heldmann J. et al. Detection of water in the LCROSS ejecta plume // Science. 2010. V. 330. Iss. 6003. P. 463–468. https://doi.org/10.1126/science.1186986
  7. Petro N.E., Pieters C.M. Surviving the heavy bombardment: Ancient material at the surface of South Pole–Aitken Basin // J. Geophys. Res. Atmos. 2004. V. 109. Art. ID. E06004. https://doi.org/10.1029/2003JE002182
  8. Cesaretti G., Dini E., Kestelier X.D. et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology // Acta Astronaut. 2014. V. 93. P. 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034
  9. Taylor S.L., Jakus A.E., Koube K.D. et al. Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks// Acta Astronaut. 2018. V. 143. P. 1–8. https://doi.org/10.1016/j.actaastro.2017.11.005
  10. Goulas A., Binner J.G.P., Engstrom D.S. et al. Mechanical behaviour of additively manufactured lunar regolith simulant components // Proc IMechE Part L: J Materials: Design and Applications. 2018. V. 233. Iss. 8. P. 1629–1644.https://doi.org/10.1177/1464420718777932
  11. Caprio L., Demir A.G., Previtali B. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion // Addit. Manuf. 2020. V. 32. Art. ID. 101029. https://doi.org/10.1016/j.addma.2019.101029
  12. Kornuta D., Abbud-Madrid A., Atkinson J. et al. Commercial lunar propellant architecture: A collaborative study of lunar propellant production// Reach. 2019. V. 13. Art. ID. 100026. https://doi.org/10.1016/j.reach.2019.100026
  13. Флоренский К.П. Лунный грунт: свойства и аналоги. М.: АН СССР. Ин-т геохимии и аналит. химии им. В.И. Вернадского, 1975.
  14. Carrier W.D., Olhoeft G.R., Mendell W. Physical properties of the lunar surface // Lunar sourcebook: A user’s guide to the Moon. Cambridge: Cambridge Univ. Press, 1991. P. 475–594.
  15. Taylor L.A., Pieters C.M., Britt D. Evaluations of Lunar Regolith Simulants// Planet. Space Sci. 2016. V. 126. P. 1–7. https://doi.org/10.1016/j.pss.2016.04.005
  16. Slyuta E.N., Grishakina E.A., Makobchuk V.Y. et al. Lunar soil-analogue VI-75 for large-scale experiments // Acta Astronaut. 2021. V. 187. P. 447–457. https://doi.org/10.1016/j.actaastro.2021.06.047
  17. Grugel R.N. Sulfur “concrete” for lunar applications – Sublimation concerns // Adv. Space Res. 2008. V. 41. Iss. 1. P. 103–112. https://doi.org/10.1016/j.asr.2007.08.018
  18. Fateri M., Gebhardt A. Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-Site Manufacturing Applications // Intern. J. Appl. Ceram. Technol. 2015. V. 12. Iss. 1. P. 46–52. https://doi.org/10.1111/ijac.12326
  19. Goulas A., Friel R.J. 3D printing with moondust // Rapid Prototyp. J. 2016. V. 22. Iss. 6. P. 864–870.
  20. Gerdes N., Fokken L.G., Linke S. et al. Selective Laser Melting for processing of regolith in support of a lunar base // J. Laser Appl. 2018. V. 30. Art. ID. 032018. https://doi.org/10.2351/1.5018576
  21. Farries K.W., Visintin P., Smith S.T. et al. Construction of lunar masonry habitats using laser-processed bricks // 71st Intern. Astronautical Congress (IAC) – The CyberSpace Edition. 2020. IAC-20-E5.1.1 x58693. 11 p.
  22. Balla V.K., Roberson L.B., O’Connor G.W. et al. First demonstration on direct laser fabrication of lunar regolith parts // Rapid Prototyp. J. V. 18. Iss. 6. P. 451–457. https://doi.org/10.1108/13552541211271992
  23. Goulas A., Binner J.G.P., Harris R.A. et al. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing // Appl. Mater. Today. 2017. V. 6. P. 54–61. https://doi.org/10.1016/j.apmt.2016.11.004

补充文件

附件文件
动作
1. JATS XML
2.

下载 (30KB)
3.

下载 (58KB)
4.

下载 (804KB)
5.

下载 (909KB)
6.

下载 (1MB)
7.

下载 (1MB)
8.

下载 (650KB)

版权所有 © Т.М. Томилина, А.А. Ким, Д.И. Лисов, А.М. Лысенко, 2023