Prospects for the development of heliogeophysical satellite observations on small spacecraft

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper considers the prerequisites for the creation of satellite systems of small spacecraft of the cubesat type for heliogeophysical purposes. The history of the appearance and features of this type of platform are described, and examples of their implementation are given. The domestic satellite group of the small spacecraft, developed under the programs “Universat” and “Space-Pi”, are also considered. Small spacecraft with magnetometric measuring equipment on board are described. Based on the results of the analysis, the main relevant directions for the development of on-board heliogeophysical and, in particular, magnetometric equipment have been identified. Problems have also been identified in the implementation system of the received data. As examples of modern developments in the field of satellite heliogeophysical observations, the activities of Institute of Applied Geophysics as a thematic customer, expert and manufacturer of equipment are described. The possibilities of analyzing data from already in use devices are described, and prospects for further development are also stated.

Texto integral

Acesso é fechado

Sobre autores

A. Bragina

Institute of Applied Geophysics named after Academician E.K. Fedorov

Autor responsável pela correspondência
Email: anastasia.a.bragina@yandex.ru
Rússia, Moscow

V. Minligareev

Institute of Applied Geophysics named after Academician E.K. Fedorov

Email: anastasia.a.bragina@yandex.ru
Rússia, Moscow

S. Bogodyazh

Institute of Applied Geophysics named after Academician E.K. Fedorov

Email: anastasia.a.bragina@yandex.ru
Rússia, Moscow

Bibliografia

  1. Зеленый Л.М., Климов С.И., Ангаров В.Н. и др. Проект микроспутник “Чибис-М”. Опыт создания и реализации // Исследование солнечно-земных связей на микро-, нано- и пикоспутниках: Матер. науч. сессии Секции солнечно-земных связей Совета по космосу РАН. Сер. “Механика, управление и информатика” М.: ИКИ РАН, 2015. С. 91–118.
  2. Зеленый Л.М., Гуревич А.В., Климов С.И. и др. Академический микроспутник Чибис-м // Космические исследования. 2014. Т. 52. № 2. С. 93–105.
  3. Богомолов В.В., Богомолов А.В., Дементьев Ю.Н. и др. Научно-образовательный космический эксперимент на спутниках “СириусСат-1,-2” // Вестник Московского университета. Сер. 3. Физика. Астрономия. 2020. № 6.
  4. Прохоров М.И., Богомолов В.В., Богомолов А.В. и др. Анализ быстрых вариаций потоков электронов в области зазора методом нормированного размаха по данным измерений на спутнике СириусСат-1 // Космические исследования. 2022. Т. 60. № 4. С. 271–284.
  5. Bogomolov A.V., Bogomolov V.V., Iyudin A.F et al. Space Weather Effects from Observations by Moscow University Cubesat Constellation // Universe. 2022. V. 8. Iss. 282.
  6. Копытенко Ю.А., Петрова А.А., Гурьев И.С. и др. Анализ информативности магнитного поля Земли в околоземном космическом пространстве // Космические исследования. 2021. Т. 59. № 3. С. 177–190.
  7. Вернов С.Н., Григоров Н.Л., Логачев Ю.И. и др. Измерение космического излучения на искусственном спутнике Земли // Искусственные спутники Земли. 1958. Вып. 1: Результаты научных исследований, проведенных по программе МГГ при помощи первого и второго искусственных спутников Земли. С. 5–8.
  8. Соловьев А.А. Некоторые задачи геомагнетизма, решаемые по данным наземных и спутниковых наблюдений // Геология и геофизика. 2023. Т. 64. № 9. С. 1330–1356.
  9. Долгинов Ш.Ш., Жузгов Л.H., Пушков Н.В. Предварительные сообщения о геомагнитных измерениях на третьем искусственном спутнике Земли // Искусственные спутники Земли. 1958. Вып. 2. С. 50–52.
  10. Olsen N., Holme R., Luehr H. A magnetic field model derived from Ørsted, CHAMP and Ørsted-2/SACC observations // Proc. AGU Spring Meeting. Washington, D.C., USA. 2002
  11. Брагина А.А., Арутюнян Д.А., Минлигареев В.Т. Обзор космических систем гелиогеофизического назначения с магнитометрической аппаратурой // Гелиогеофизические исследования. 2022. № 34. С. 40–48.
  12. Симонов В.Л. Применение разработки наноспутников кубсат (Cubesat) в учебном процессе // Современные информационные технологии в образовании, науке и промышленности: Сб. тр. XХI Международная конференция. XIХ Международный конкурс научных и научно-методических работ. Москва, Россия. 2022. С. 81–84.
  13. Фомин Д.В. “АмГУ-1” (“АмурСат”) – первый спутник АмГУ // Космонавтика: наука и образование: Сб. материалов Всероссийской научной конференции. Благовещенск, Россия. 2019. С. 15–18.
  14. Садовничий В.А., Панасюк М.И., Липунов В.М. и др. Мониторинг природных и техногенных космических угроз: результаты миссии Ломоносов и проект Универсат-СОКРАТ // Космические исследования. 2019. Т. 57. № 1. С. 46–56.
  15. Рачкин Д.А., Тененбаум С.М., Мельникова В.Г. и др. Разработка МКА типоразмера Cubesat – опыт МГТУ им. Н. Э. Баумана // К. Э. Циолковский и прогресс науки и техники в XXI веке: материалы 56-х научных чтений, посвященных разработке научного наследия и развитию идей К. Э. Циолковского. Калуга, Россия. 2021. С. 24–27.
  16. Минлигареев В.Т., Заболотнов В.Н., Денисова В.И. и др. Обеспечение единства магнитных измерений на государственной наблюдательной сети // Гелиогеофизические исследования. 2013. № 6. С. 8–19.
  17. Богачев С.А., Головин А.А., Дятков С.Ю. и др. Малоразмерный космический магнитометр для наноспутника “Ярило” № 3. // Космонавтика и ракетостроение. 2023. № 1(130). С. 123–134.
  18. Свидетельство 2023622956. Минутные измерения магнитовариационных обсерваторий сети INTERMAGNET за период с 1991 по 2018 год после обработки. База данных / Вишняков Д.Д., Брагина А.А., Арутюнян Д.А., Шклярук А.Д. (RU); опубл. 28.08.2023.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of development of the spacecraft with magnetometric equipment on board

Baixar (536KB)
3. Fig. 2. Launch on 5.11.2024, Vostochny Cosmodrome

Baixar (277KB)
4. Fig. 3. Small spacecraft of the Universat program, launched into orbit on 5.11.2024

Baixar (296KB)
5. Fig. 4. Magnetometer of Bauman Moscow State Technical University with Honeywell HMC100x sensor during calibration

Baixar (268KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025