Stand and real-conditions testing of an autonomous optical navigation system for operations in circumlunar orbits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Stand testing of an autonomous optical navigation system for operation in circumlunar orbits and during Earth-Moon transfer was performed. The system includes a wide-angle navigation camera for estimation of spacecraft position using observations of the planet’s horizon and of ground control points on its surface, a narrow-angle navigation camera for refinement the SC position using ground control points in higher resolution images, and two star trackers for determination of system orientation. The navigation software was also tested using the image of the lunar surface obtained by the television system STS-L installed on the Luna-25 spacecraft. All the control points from the developed catalog that were located in the imaged area were confidently recognized. The diversion in the spacecraft coordinates as obtained from the optical navigation measurements and from the ballistic forecast was within the expected measurement and forecast errors.

Full Text

Restricted Access

About the authors

B. S. Zhukov

Space Research Institute

Author for correspondence.
Email: bzhukov@mail.ru
Russian Federation, Moscow

G. A. Avanesov

Space Research Institute

Email: bzhukov@mail.ru
Russian Federation, Moscow

A. S. Liskiv

Space Research Institute

Email: bzhukov@mail.ru
Russian Federation, Moscow

P. S. Smetanin

Space Research Institute

Email: bzhukov@mail.ru
Russian Federation, Moscow

References

  1. Наземный комплекс управления дальними космическими аппаратами. Перспективы развития / Под ред. Ю.М. Урличича. М.: Радиотехника, 2012. 216 с.
  2. Телевизионная съемка кометы Галлея / Под ред. Р.З. Сагдеева. М.: Наука, 1989. 295 с.
  3. Bhaskaran S. Autonomous navigation for deep space missions // Proc. Conf. American Institute of Aeronautics and Astronautics. Stockholm, Sweden. 2012. AIAA-2012-1267135. https://doi.org/10.2514/6.2012-1267135
  4. Аванесов Г.А., Гордеев Р.В., Гришин В.А. и др. Телевизионная система навигации и наблюдения // Астрономический вестник. 2010. Т. 44. № 5. С. 473–479.
  5. Wang Q., Liu J. A Chang’e-4 mission concept and vision of future Chinese lunar exploration activities // Acta Astronautica. 2016. V. 127. P. 678–683. https://doi.org/10.2016/j.actaastro.2016.06.024.
  6. Huang X., Xu C., Hu J. et al. Powered-descent landing GNC system design and flight results for Tianwen-1 mission // Astrodynamics. 2022. V. 6. № 1. P. 3–16. https://doi.org/10.1007/s4/2064-021-0118-9/
  7. Аванесов Г.А., Жуков Б.С., Сметанин П.С., Михайлов М.В. Отработка технологии автономной навигации КА дальнего космоса на Международной Космической Станции // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 7. С. 41–49. https://doi.org/10.21046/2070-7401-2020-17-7-41-49
  8. Аванесов Г.А., Жуков Б.С., Сметанин П.С. Стенд для отработки технологии автономной припланетной оптической навигации КА // Современные проблемы дистанционного зондирования Земли из космоса. 2021. Т. 18. № 3. С. 107–117. https://doi.org/10.21046/2070-7401-2021-18-3-107-117
  9. Scholten F., Oberst J., Matz K.-D. et al. GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data // J. Geophys. Res. 2012. V. 117(E12). https://doi.org/10.1029/2011JE003926
  10. Hapke B.W. Theory of Reflectance and Emittance Spectroscopy. N.Y.: Cambridge Univ. Press, 2012.
  11. Sato H., Robinson M.S., Hapke B. et al. Resolved Hapke parameter maps of the Moon // J. Geophysical Research: Planets. 2014. V. 119. Iss. 8. P. 1775–1805. https://doi.org/10.1002/2013JE004580
  12. Жуков Б.С., Жуков С.Б., Форш А.А. Возможности навигационных измерений по лимбу Земли в видимом и ближнем ИК диапазоне // Современные проблемы дистанционного зондирования Земли из космоса. 2015. Т. 12. № 2. С. 61–76.
  13. Жуков Б.С., Полянский И.В., Жуков С.Б. Автономная оптическая навигация на окололунных орбитах и при посадке на Луну с помощью сверхширокоугольной камеры // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14. № 2. С. 24–35. https://doi.org/10.21046/2070-7401-2017-14-2-24-35
  14. Harris C., Stephens M. A combined corner and edge detector // Proc. 4th Alvey Vision Conference. Manchester, UK. 1988. P. 147–151. https://doi.org/10.5244/C.2.23

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stand for testing the autonomous optical navigation technology: top – the SHNK stand (left) and its projection part (right): 1) control computer monitors, 2) optical projector, 3) screen, 4) SHNK optical head (covered with a black blanket); bottom: left – the projection part of the UNK stand with a projection monitor (1) and a collimator lens (2), right – the recording part of the UNK stand with an optical head (3)

Download (388KB)
3. Fig. 2. Examples of SHNK (left) and UNK (right) images obtained on the stand from an altitude of 200 km; the selected horizon points on the SHNK image and the control points on the SHNK and UNK images are marked in yellow

Download (194KB)
4. Fig. 3. Errors ΔN, ΔB, ΔR of the bench measurements of the spacecraft coordinates using the SHNK along the horizon in circumlunar polar orbits at altitudes of 70, 100, 200, 400 and 800 km

Download (586KB)
5. Fig. 4. Errors ΔN, ΔB, ΔR of the bench measurements of the spacecraft coordinates using the SHNK by control points in circumlunar polar orbits at altitudes of 70, 100 and 200 km

Download (507KB)
6. Fig. 5. Errors ΔN, ΔB of the bench measurements of the spacecraft coordinates using the UNK by control points in circumlunar polar orbits at altitudes of 200, 400 and 800 km

Download (499KB)
7. Fig. 6. The image of the lunar surface obtained on 17.VIII.2023 by the KAM-S/STS-L camera. The white nested squares show the found control points at three resolution levels of their reference images

Download (531KB)

Copyright (c) 2025 Russian Academy of Sciences