Structure of inorganic compounds halogen bonds in derivatives of 2,5-diiod-1,4-dimethylbenzene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The synthesis of 1,4-di(bromomethyl)-2,5-diiodo-benzene (1), diacetate of 2,5-diiodo1,4-di(hydroxymethyl)benzene (2) and diiodide of 1,1’-[(2,5-diiodo-1,4-phenylene)bis(methylene)]dipyridinium (3) is described and their crystallographic data are given. All three crystal structures are characterized by the stacked packing of planar molecules and the presence of halogen bonds I–Br, I–O, and I–I, respectively. The number of halogen bonds is maximum in compound 1: two I–Br bonds for each halogen atom. Compounds 2 and 3 contain one halogen bond per halogen atom, but they are significantly shorter than in compound 1. All crystals were investigated by IR spectroscopy and synchronized thermal analysis. Compound 1, which has no ionic or hydrogen bonds, melts at a higher temperature than ionic compound 3 (218 and 200°C, respectively) due to the presence of a large number of intermolecular halogen bonds. Compound 2 melts at a lower temperature (151°C), which is characteristic of esters.

全文:

受限制的访问

作者简介

K. Rajakumar

South Ural State University

Email: zherebtcovda@susu.ru
俄罗斯联邦, Chelyabinsk

D. Zherebtsov

South Ural State University

编辑信件的主要联系方式.
Email: zherebtcovda@susu.ru
俄罗斯联邦, Chelyabinsk

S. Nayfert

South Ural State University

Email: zherebtcovda@susu.ru
俄罗斯联邦, Chelyabinsk

A. Osipov

South Ural State University

Email: aaosipov@susu.ru
俄罗斯联邦, Chelyabinsk

S. Adonin

South Ural State University; A. E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: zherebtcovda@susu.ru
俄罗斯联邦, Chelyabinsk; Irkutsk

D. Spiridonova

St. Petersburg State University

Email: zherebtcovda@susu.ru

Научный парк

俄罗斯联邦, St. Petersburg

参考

  1. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  2. Mikherdov A.S., Novikov A.S., Boyarskiy V.P et al. // Nature Commun. 2020. V. 11. 2921. https://doi.org/10.1038/s41467-020-16748-x
  3. Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.31857/S0044457X21100202
  4. Yushina I., Tarasova N., Kim D. et al. // Crystals. 2019. V. 9. P. 506. https://doi.org/10.3390/cryst9100506
  5. Albright E., Cann J., Decken A. et al. // Cryst. Eng. Commun. 2017. V. 19. P. 1024. https://doi.org/10.1039/C6CE02339H
  6. Baykov S.V., Filimonov S.I., Rozhkov A.V. et al. // Cryst. Growth Des. 2020. V. 20. P. 995.
  7. Albietz P.J., Cleary B.P., Paw W. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 12091. https://doi.org/10.1021/ja016127l
  8. Albietz P.J., Cleary B.P., Paw W. et al. // Inorg. Chem. 2002. V. 41. P. 2095. https://doi.org/10.1021/ic025506s
  9. Rajakumar K., Sharutin V.V., Adonin S.A. et al. // J. Struct. Chem. 2022. V. 63. P. 620. https://doi.org/10.1134/S0022476622040138
  10. Grunder S., Huber R., Horhoiu V. et al. // J. Org. Chem. 2007. V. 72. P. 8337. https://doi.org/10.1021/jo7013998
  11. Gaefke G., Enkelmann V., Höger S. // Synthesis. 2006. V. 17. P. 2971. https://doi.org/10.1055/s-2006-942534
  12. Costa A.L., Ferreira L.F., Prata J.V. // J. Polym. Sci. A. Polym. Chem. 2008. V. 46. P. 6477. https://doi.org/10.1002/pola.22957
  13. Hodecker M., Kozhemyakin Y., Weigold S. et al. // Chem. Eur. J. 2020. V. 26. P. 16990. https://doi.org/10.1002/chem.202002552.
  14. Jordan R.S., Wang Y., McCurdy R.D. et al. // Chem. 2016. V. 1. P. 78. https://doi.org/10.1016/j.chempr.2016.06.010
  15. Fan Q.-L., Lu S., Lai Y.-H. et al. // Macromolecules. 2003. V. 36. P. 6976. https://doi.org/10.1021/ma030093f
  16. Nishinaga S., Sawanaka Y., Toyama R. et al. // Chem. Lett. 2018. V. 47. P. 1409. https://doi.org/10.1246/cl.180644
  17. Horváth D.V., Holczbauer T., Bereczki L. et al. // CrystEngComm. 2018. V. 13. https://doi.org/10.1039/c8ce00041g
  18. CrysAlisPro 1.171.41.103a (Rigaku Oxford Diffraction, 2021).
  19. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  20. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  21. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  22. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806. https://doi.org/10.1021/jp8111556

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Fragment of the structures of compounds 1 (a), 2 (b) and 3 (c, d). Broken lines indicate halogen bonds, the number indicates the length of this bond in angstroms. Thin lines correspond to the shortest distances between iodine anions and positively charged nitrogen atoms.

下载 (303KB)
3. Fig. 2. IR spectra of compounds 1 (I), 2 (II), 3 (III).

下载 (158KB)
4. Fig. 3. Thermogram of joint 1.

下载 (163KB)
5. Fig. 4. Thermogram of connection 2.

下载 (184KB)
6. Fig. 5. Thermogram of connection 3.

下载 (150KB)

版权所有 © Russian Academy of Sciences, 2024