Fluorine conducting ceramics based on BiF3

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The temperature dependence of the ionic conductivity of a ceramic sample of the Bi0.94Ba0.06F2.94 solid electrolyte was studied using impedance spectroscopy in the temperature range 293–473 K. The ceramics was obtained by solid-phase synthesis (873 K, 3 h) in a closed Cu ampoule and is a heterovalent solid solution of tysonite structure (space group) with lattice parameters a = 7.1482(8) and c = 7.3279(5) Å. The conductivity value at room temperature and its activation enthalpy are equal to σcer = 3 × 10–5 S/cm and DHs = 0.49 ± 0.05 eV, respectively. The ion-conducting properties of isostructural solid electrolytes Bi1–yBayF3–y and La1–yBayF3–y with similar values of ionic radii of matrix cations (1.17 and 1.16 Å for Bi3+ and La3+, respectively) are compared. The conductivity at 473 K of Bi0.94Ba0.06F2.94 ceramics exceeds the electrical conductivity of ceramics and La0.95Ba0.05F2.95 single crystals by 6 and 3.3 times, respectively.

Texto integral

Acesso é fechado

Sobre autores

N. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: nsorokin1@yandex.ru
Rússia, Moscow

Bibliografia

  1. Соболев Б.П., Гарашина Л.С., Федоров П.П. и др. // Кристаллография. 1973. Т. 18. Вып. 4. С. 751.
  2. Zalkin A., Templeton D.H. // J. Am. Chem. Soc. 1953. V. 75. P. 2453.
  3. Сорокин Н.И., Каримов Д.Н. // Кристаллография. 2023. Т. 68. № 2. С. 272. https://doi.org/10.31857/S0023476123020182
  4. Greis O., Martinez-Ripoll M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 1. S. 105. https://doi.org/10.1002/zaac.19774360112
  5. Shafer M.W., Chandrashekhar G.N., Figat R.A. // Solid State Ionics. 1981. V. 5. P. 633. https://doi.org/10.1016/0167-2738(81)90334-9
  6. Ардашникова Е.И., Борзенкова М.П., Калинченко Ф.В., Новоселова А.В. // Журн. неорган. химии. 1981. Т. 26. № 7. С. 1727.
  7. Ardasnikova E.I., Prituzhalov V.A., Kutsenok I.V. // Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids / Ed. Tressaud A. Chippenham: John Wiley & Sons. 2010. P. 423.
  8. Свищев И.М., Ардашникова Е.И., Борзенкова М.П., Новоселова А.В. // Автор. свидетельство СССР. SU 1122963, 7.11.1984, Бюл. № 41.
  9. Baumgartner J.F., Krumeich F., Worle M. et al. // Commun. Chem. 2022. V. 5. P. 6. https://doi.org/10.1038/s42004-021-00622-y
  10. Liu T., Peng N., Zhang X. et al. // Energy Storage Mater. 2021. V. 42. P. 42. https://doi.org/10.1016/j.ensm.2019.03.028
  11. Xiao A.W., Galatolo G., Pasta M. // Joule. 2021. V. 5. № 11. P. 2823. https://doi.org/10.1016/j.joule.2021.09.016
  12. Shimoda K., Minato T., Konishi H. et al. // J. Electroanal. Chem. 2021. V. 895. P. 115508. https://doi.org/10.1016/j.jelechem.2021.115508
  13. Reddy M.A., Fichtner M. // J. Mater. Chem. 2011. V. 21. P. 17059.
  14. Слободюк А.Б., Полянцев М.М., Гончарук В.К., Кавун В.Я. // Вестник ДВО РАН. 2021. № 5. С. 95. https://doi.org/10.37102/0869-7698_2021_219_05_08
  15. Konishi H., Minato T., Abe T., Ogumi Z. // ChemistrySelect. 2020. V. 5. P. 4943. https://doi.org/10.1002/slct.202000713
  16. Кавун В.Я., Полянцев М.М., Меркулов Е.Б., Гончарук В.К. // Журн. структур. химии. 2019. Т. 60. № 2. С. 231.
  17. Kavun V.Yu., Uvarov N.F., Slobodyuk A.B. et al. // J. Solid State Chem. 2018. V. 263. P. 203. https://doi.org/10.1016/j.jssc.2018.04.029
  18. Притужалов В.А., Ардашникова Е.А., Долгих В.А., Абакумов А.М. // Журн. неорган. химии. 2011. Т. 56. № 3. С. 355.
  19. Rhandour A., Reau J.M., Matar S. et al. // Mater. Res. Bull. 1985. V. 20. P. 1309.
  20. Reau J.M., Tian S.B., Rhandour A. et al. // Solid State Ionics. 1985. V. 15. P. 217.
  21. Shannon R.D. // Acta Cryst. A. 1976. V. 32. № 5. P. 751.
  22. Greis O., Martinez M. // Z. Anorg. Allg. Chem. 1977. B. 436. № 9. S. 105.
  23. Cheetham A.B., Norman N. // Acta Chem. Scand. A. 1974. V. 28. P. 55.
  24. Иванов-Шиц А.К., Сорокин Н.И., Федоров П.П., Соболев Б.П. // ФТТ. 1983. Т. 25. № 6. С. 1748.
  25. Мурин И.В., Амелин Ю.В. // Вест. Ленингр. ун-та. 1983. № 22. С. 97.
  26. Chable J., Dieudonne B., Body M. et al. // Dalton Trans. 2015. V. 44. P. 19625. https://doi.org/10.1039/c5dt02321a
  27. Bhatia H., Thieu D.T., Pohl H.P. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 23707.
  28. Сорокин Н.И., Фоминых М.В., Кривандина Е.А. и др. // ФТТ. 1998. Т. 40. № 4. С. 658.
  29. Kroger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland. 1964. 1039 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Impedance plot and equivalent electrical circuit for the electrochemical system Ag|Bi0.94Ba0.06F2.94|Ag ceramics at 294 K. The numbers at the shaded points indicate the frequency in kHz. The total resistance of the ceramic sample is Rcer = Rig + Rgb = 6.5×104 Ohm (Rig << Rcer).

Baixar (70KB)
3. Fig. 2. Concentration dependence of intragranular conductivity of Bi1–yBayF3–y polycrystals: 1 – data from the conducted study, 2 – data from [7, 18], 3 – data from [19].

Baixar (65KB)
4. Fig. 3. Temperature dependences of the anionic conductivity of fluoride ceramics Bi0.94Ba0.06F2.94 in coordinates lgσT, 103/T: 1, 2 – first sample, 3, 4 – second sample, 1, 3 – heating, 2, 4 – cooling.

Baixar (67KB)
5. Fig. 4. Temperature dependences of the anionic conductivity of fluoride materials in the coordinates lgσ, 103/T: 1 – Bi0.94Ba0.06F2.94 ceramics (heating), 2 – BiF3 polycrystal [3], 3 – Bi1–yKyF3–2y polycrystal [20], 4 – Bi1–yPbyF3–y polycrystal [25], 5 – La0.95Ba0.05F2.95 ceramics [26, 27], 6 – La0.95Ba0.05F2.95 single crystal [28].

Baixar (78KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024