Laboratory X-ray microphotography: a method of inner three-dimensional structure reconstruction of different nature objects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A brief retrospective of the development of laboratory X-ray microtomography at the A. V. Shubnikov Institute of Crystallography of the Russian Academy of Sciences (IC RAS) is presented. The main methods and approaches that have increased the informativeness of microtomographic measurements are outlined, such as the use of monochromatic radiation, the application of phase-contrast method, and the method of diffraction tomography (topo-tomography). The designs of the instruments created and operating at IC RAS are described, and some experimental results obtained with them are presented.

全文:

受限制的访问

作者简介

D. Zolotov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: zolotovden@yandex.ru
俄罗斯联邦, Moscow

A. Buzmakov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zolotovden@yandex.ru
俄罗斯联邦, Moscow

I. Dyachkova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zolotovden@yandex.ru
俄罗斯联邦, Moscow

Yu. Krivonosov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zolotovden@yandex.ru
俄罗斯联邦, Moscow

Yu. Dudchik

A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University

Email: zolotovden@yandex.ru
白俄罗斯, Minsk

V. Asadchikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: zolotovden@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Асадчиков В.Е., Бузмаков А.В., Золотов Д.А. и др. // Кристаллография. 2010. Т. 55. № 1. С. 167.
  2. Бузмаков А.В., Асадчиков В.Е., Золотов Д.А. и др. // Кристаллография. 2018. Т. 63. № 6. C. 1007. https://doi.org/10.1134/S0023476118060073
  3. Кривоносов Ю.С., Бузмаков А.В., Григорьев М.Ю. и др. // Кристаллография. 2023. Т. 68. № 1. С. 160. https://doi.org/10.31857/S0023476123010149
  4. Кривоносов Ю.С., Бузмаков А.В., Асадчиков В.Е., Федорова А.А. // Кристаллография. 2023. Т. 68. № 2. С. 189. https://doi.org/10.31857/S0023476123020108
  5. Van Aarle W., Palenstijn W.J., De Beenhouwer J. et al. // Ultramicroscopy. 2015. V. 157. P. 35. https://doi.org/10.1016/j.ultramic.2015.05.002
  6. Junemann O., Ivanova A.G., Bukreeva I. et al. // Cell Tissue Res. 2023. V. 393. P. 537. https://doi.org/10.1007/s00441-023-03800-7
  7. Асадчиков В.Е., Бузмаков А.В., Волошин А.Э. и др. // Экспериментальная и клиническая гастроэнтерология. 2018. № 7. С. 118.
  8. Кривоносов Ю.С., Асадчиков В.Е., Бузмаков А.В. и др. // Кристаллография. 2019. Т. 64. № 6. С. 912. https://doi.org/10.1134/S0023476119060110
  9. Ерофеев В.Н., Никитенко В.И., Половинкина В.И. и др. // Кристаллография. 1971. Т. 16. № 1. С. 190.
  10. Золотов Д.А., Асадчиков В.Е., Бузмаков А.В. и др. // Автометрия. 2019. Т. 55. № 2. С. 28. https://doi.org/10.15372/AUT20190203
  11. Asadchikov V., Buzmakov A., Chukhovskii F. et al. // J. Appl. Cryst. 2018. V. 51. № 6. P. 1616. https://doi.org/10.1107/S160057671801419X
  12. Shiryaev A.A., Zolotov D.A., Suprun O.M. et al. // CrystEngComm. 2018. V. 20. P. 7700. https://doi.org/10.1039/C8CE01499J
  13. Анисимов Н.П., Золотов Д.А., Бузмаков А.В. и др. // Кристаллография. 2023. Т. 68. № 4. С. 507. https://doi.org/10.31857/S0023476123600192
  14. López-Muñoz F., Boya J., Marín F., Calvo J.L. // J. Pineal Res. 1996. V. 20. № 3. P. 115. https://doi.org/10.1111/j.1600-079x.1996.tb00247.x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diagram of the THOMAS X–ray microtomograph: 1 - X–ray source (X–ray tube), 2 – monochromator unit, 3 – vacuum path (collimator), 4 – vacuum pump, 5 - the studied sample on the positioning system, 6 - X–ray detector, 7 - local radiation protection zone

下载 (140KB)
3. Fig. 2. Results of a microtomographic examination of a pineal gland sample. An enlarged fragment containing the studied concretions is shown on the right

下载 (258KB)
4. Fig. 3. Diagram of the DITOM–M diffractometer: 1 – X–ray tube, 2 - block with a monochromator crystal, 3 – tubular collimator, 4 – vacuum pump, 5 – a pair of mutually perpendicular slits, 6 – goniometric head with the crystal under study, 7 – eight–axis goniometer, 8 - goniometer control unit, 9 – two–dimensional X–ray detector XIMEA xiRAY11, 10 - laboratory power supply for the detector, 11 - personal computer

下载 (155KB)
5. Fig. 4. The result of three–dimensional restoration of the reflectivity of a Si(111) crystal containing dislocation half–loops: a - the entire crystal, b - an enlarged fragment

下载 (162KB)
6. Fig. 5. The result of three–dimensional reconstruction of the defective structure of a synthetic diamond containing cone-shaped defects: a, b - different angles of rotation of the sample

下载 (248KB)
7. Fig. 6. Diagram of the phase contrast experiment (a): 1 – wide–focus X–ray tube, 2 – slit aperture, 3 - test sample mounted on a goniometric device, 4 - CCD detector; R0 = 90, R1 = 1350, R2 = 250-600 mm. Image of a square grid (Au) with a thread thickness of 20 microns (b)

下载 (116KB)
8. Fig. 7. Phase-contrast normalized projections of a polyethylene capillary in vertical (a) and horizontal (b) positions and corresponding intensity profiles (c, d) plotted along dotted lines (R1 = 1350, R2 = 250 mm, accelerating voltage 45 kV)

下载 (246KB)
9. Fig. 8. Longitudinal sections of the reconstructed phase contrast (a) and absorption (b) tomographic images of an epiphysis sample embedded in paraffin and grayscale intensity profiles plotted along lines 1 and 2 (in the direction from left to right). Numerous calcifications are indicated by white arrows

下载 (300KB)

版权所有 © Russian Academy of Sciences, 2024