Protein of unknown function from variovorax paradoxus with amino acid substitution n174k is able to form schiff base with plp molecule
- Authors: Ilyasov I.O.1, Minyaev M.E.2, Rakitina T.V.3, Bakunova A.K.1, Popov V.O.1, Bezsudnova E.Y.1, Boyko K.M.1
-
Affiliations:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Institute of Organic Chemistry, Russian Academy of Sciences
- National Research Centre “Kurchatov Institute”
- Issue: Vol 69, No 6 (2024)
- Pages: 981-986
- Section: STRUCTURE OF MACROMOLECULAR COMPOUNDS
- URL: https://permmedjournal.ru/0023-4761/article/view/673623
- DOI: https://doi.org/10.31857/S0023476124060075
- EDN: https://elibrary.ru/YHTZPU
- ID: 673623
Cite item
Abstract
Pyridoxal-5'-phosphate (PLP)-dependent enzymes are one of the most widely represented groups of enzymes in organisms, performing more than 150 different catalytic functions. Based on the three-dimensional structure, members of this group are divided into seven (I-VII) different fold types. Cofactor binding in these enzymes occurs due to the formation of a Schiff base with a conserved lysine residue located in the active site. A recently discovered protein from the bacterium Variovorax paradoxus (VAPA), which belongs to the IV fold type and has significant structural similarity to transaminases, contains an asparagine residue at the catalytic lysine position in the transaminases and, as a result, cannot form a Schiff base with PLP and does not have aminotransferase activity. In this research, a point mutant of VAPA protein with the N174K substitution was obtained and its 3D structure was determined. Analysis of the structural data showed that the introduced mutation restores the ability of VAPAN174K to form a Schiff base with a cofactor.
Full Text

About the authors
I. O. Ilyasov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Author for correspondence.
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
M. E. Minyaev
Institute of Organic Chemistry, Russian Academy of Sciences
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
T. V. Rakitina
National Research Centre “Kurchatov Institute”
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
A. K. Bakunova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
V. O. Popov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
E. Y. Bezsudnova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
K. M. Boyko
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: kmb@inbi.ras.ru
Russian Federation, Moscow
References
- Boyko K.M., Matyuta I.O., Nikolaeva A.Y. et al. // Crystals. 2022. V. 12. P. 619. https://doi.org/10.3390/cryst12050619
- Christen P., Mehta P.K. // Chem. Rec. 2001. V. 1. P. 436. https://doi.org/10.1002/tcr.10005
- Bezsudnova E.Y., Popov V.O., Boyko K.M. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 2343. https://doi.org/10.1007/s00253-020-10369-6
- Catazaro J., Caprez A., Guru A. et al. // Proteins. 2014. V. 82. P. 2597. https://doi.org/10.1002/prot.24624
- Bezsudnova E.Y., Boyko K.M., Popov V.O. // Biochemistry (Moscow). 2017. V. 82. P. 1572. https://doi.org/10.1134/S0006297917130028
- Bezsudnova E.Y., Dibrova D.V., Nikolaeva A.Y. et al. // J. Biotechnol. 2018. V. 271. P. 26. https://doi.org/10.1016/j.jbiotec.2018.02.005
- Liang J., Han Q., Tan Y. et al. // Front. Mol. Biosci. 2019. V. 6. P. 4. https://doi.org/10.3389/fmolb.2019.00004
- Cook P.D., Thoden J.B., Holden H.M. // Protein Sci. 2006. V. 15. P. 2093. https://doi.org/10.1110/ps.062328306
- Evans P.R., Murshudov G.N. // Acta Cryst. D. 2013. V. 69. P. 1204. https://doi.org/10.1107/S0907444913000061
- Vagin A., Teplyakov A. // J. Appl. Cryst. 1997. V. 30. P. 1022. https://doi.org/10.1107/S0021889897006766
- Collaborative Computational Project // Acta Cryst. D. 1994. V. 50. P. 760. https://doi.org/10.1107/S0907444994003112
- Murshudov G.N., Skubak P., Lebedev A.A. et al. // Acta Cryst. D. 2011. V. 67. P. 355. https://doi.org/10.1107/S0907444911001314
- Emsley P., Cowtan K. // Acta Cryst. D. 2004. V. 60. P. 2126. https://doi.org/10.1107/S0907444904019158
- Wallace A.C., Laskowski R.A., Thornton J.M. // Protein Eng. Des. Sel. 1995. V. 8. P. 127. https://doi.org/10.1093/protein/8.2.127
- Dai Y.N., Chi C.B., Zhou K. et al. // J. Biol. Chem. 2013. V. 288. P. 22985. https://doi.org/10.1074/jbc.M113.480335
Supplementary files
