Linear and nonlinear dielectric response of vdf60/tr40 copolymer in the vicinity of ferroelectric phase transition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the bias electric field E= (0–10 kV/cm) on the dielectric properties of the VDF60/Tr40 copolymer was studied within the temperature range of 20–110°C. It was found that the dielectric nonlinearity De, is negative in the polar phase and becomes positive above the Curie temperature (TC). The increase in TC under the field E= is not uniform. At E= < Ec (Ec is the threshold field), the Curie temperature is practically independent of E=. At E= > Ec, the increase of TC is observed. The presence of the threshold field indicates the presence of sources of random electric fields in the material under study. It is assumed that they are responsible for the smearing of the ferroelectric phase transition.

Full Text

Restricted Access

About the authors

K. A. Verkhovskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: l_korotkov@mail.ru
Russian Federation, Moscow

M. A. Pankova

Voronezh Institute of the Ministry of Internal Affairs of the Russian Federation

Email: l_korotkov@mail.ru
Russian Federation, Voronezh

I. I. Popov

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh

L. N. Korotkov

Voronezh State Technical University

Email: l_korotkov@mail.ru
Russian Federation, Voronezh

References

  1. Forukawa T. // Phase Transitions. 1989. V. 18. P. 143. https://doi.org/10.1080/01411598908206863
  2. Koizumi N., Hagino J., Murata Y. // Ferroelectrics. 1981. V. 32. P. 141. https://doi.org/10.1080/00150198108238685
  3. Лущейкин Г.А. Полимерные пьезоэлектрики. М.: Химия, 1990. 176 с.
  4. Кочервинский В.В. // Успехи химии. 1999. Т. 68. № 10. С. 904. https://doi.org/10.1070/RC1999v068n10ABEH000446
  5. Кочервинский В.В. Применение сегнетоэлектрических полимеров в технике и медицине. Palmarium Academic Publishing, 2021. 194 с.
  6. Xu Q., Gao X., Zhao S. et al. // Adv. Mater. 2021. V. 33. P. 2008452. https://doi.org/10.1002/adma.202008452
  7. Zhu L., Qing Q. // Macromolecules. 2012. V. 45. P. 2937. https://doi.org/10.1021/ma2024057
  8. Budaev A.V., Belenkov R.N., Emelianov N.A. // Condens. Matter. 2019. V. 4. № 2. P. 56. https://doi.org/10.3390/CONDMAT4020056
  9. Koizumi N., Haikawa N., Habuca H. // Ferroelectrics. 1984. V. 57. P. 99. http://dx.doi.org/10.1080/00150198408012756
  10. Yagi T., Tatemoto M., Sako J. // Polymer J. 1980. V. 12. № 4. P. 209. https://doi.org/10.1295/polymj.12.209
  11. Верховская К.А., Коротков Л.Н., Караева О.А. // Кристаллография. 2019. Т. 64. № 4. С. 586. https://doi.org/10.1134/S0023476119040271
  12. Verkhovskaya K.A., Popov I.I., Korotkov L.N. // Ferroelectrics. 2020. V. 567. № 1. P. 223. https://doi.org/10.1080/00150193.2020.1791608
  13. Verkhovskaya K.A., Popov I.I., Tolstykh N.A., Korotkov L.N. // Ferroelectrics. 2022. V. 591. № 1. P. 211. https://doi.org/10.1080/00150193.2022.2041940
  14. Смоленский Г.А., Боков В.А., Исупов В.А. и др. Физика сегнетоэлектрических явлений / Под ред. Смоленского Г.А. Л.: Наука, 1985. 396 с.
  15. Tashiro K., Takano K., Kobayashi M. et al. // Ferroelectrics. 1984. V. 57. P. 297. http://dx.doi.org/10.1080/00150198408012770
  16. Korotkov L.N. // Phys. Status Solidi. B. 2000. V. 222. № 2. P. R1. https://doi.org/10.1002/1521-3951(200011)222:23.0.CO;2-B
  17. Ламперт М., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. 416 с.
  18. Коротков Л.Н., Гриднев С.А., Климентова Т.И. // Изв. РАН. Сер. физ. 2004. Т. 68. С. 982.
  19. Дороговцев С.Н. // ФТТ. 1982. Т. 24. Вып. 6. C. 1661.
  20. Glinchuk M.D., Stephanovich V.A. // J. Phys. Condens. Matter. 1998. V. 10. Р. 11081. https://doi.org/10.1088/0953-8984/10/48/027
  21. Stephanovich V.A. // Ferroelectrics. 2000. V. 236. P. 209. https://doi.org/10.1080/00150190008016053

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Temperature dependences of e obtained during heating and cooling of the sample (1), and the dependence of e–1 on temperature (2). Straight lines are drawn in accordance with formulas (1a) and (1b). Insert – dependence of e–1 on (T – Tm)2.

Download (94KB)
3. Fig. 2. Temperature dependences of e obtained during heating (1a–3a) and cooling of the sample (1b–3b) at different values ​​of the electric bias field E= 0 (1a and 1b), 7.5 (2a and 2b) and 10 (3a and 3b) kV/cm.

Download (118KB)
4. Fig. 3. Dependence De(T) during heating and cooling of the sample.

Download (80KB)
5. Fig. 4. Dependences ТСh(E=) (curve 1) and ТСc(E=) (curve 2).

Download (63KB)

Copyright (c) 2024 Russian Academy of Sciences