Crystals of para-quaterphenyl and its trimethylsilyl derivative. I. Growth from solutions, structure and crystal chemical analysis by the Hirschfeld surface method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of crystal growth of para-quaterphenyl (4P) and its derivative – 4,4''-bis(trimethylsilyl)-para-quaterphenyl (TMS-4P-TMS) from solutions are presented. It has been established that TMS-4P-TMS crystals exhibit better growth characteristics compared to 4P. Parameters of phase transitions of 4P and TMS-4P-TMS in closed crucibles were refined using the method of differential scanning calorimetry. The crystal structure of TMS-4P-TMS in the triclinic space group P1 (Z = 2) has been decrypted for the first time using single-crystal X-ray diffraction and studied over a wide temperature range. Crystallographic analysis of the studied compounds in crystals was performed using the Hirshfeld surface method, and modeling of intermolecular interactions was conducted.

Full Text

Restricted Access

About the authors

V. A. Postnikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: postva@yandex.ru
Russian Federation, Moscow

N. I. Sorokina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

M. S. Lyasnikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: lyasnikova.m@crys.ras.ru
Russian Federation, Moscow

G. A. Yurasik

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

A. A. Kylishov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

T. A. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: postva@yandex.ru
Russian Federation, Moscow

O. V. Borshchev

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

E. A. Svidchenko

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

N. M. Surin

Enikolopov Institute of Synthetic Polymer Materials of Russian Academy of Sciences

Email: postva@yandex.ru
Russian Federation, Moscow

References

  1. Ried W., Freitag D. // Angew. Chem. 1968. V. 80. P. 932. https://doi.org/10.1002/ange.19680802203
  2. Noren G.K., Stille J.K. // J. Polym. Sci. Macromol. Rev. 1971. V. 5. P. 385. https://doi.org/10.1002/pol.1971.230050105
  3. Attia A.A., Saadeldin M.M., Soliman H.S. et al. // Opt. Mater. 2016. V. 62. P. 711. https://doi.org/10.1016/j.optmat.2016.10.046
  4. Berlman I.B. Handbook of florescence spectra of Aromatic Molecules. 2d ed. N.Y.; London: Academic Press, 1971. 473.
  5. Nijegorodov N.I., Downey W.S., Danailov M.B. // Spectrochim. Acta. A. 2000. V. 56. P. 783. https://doi.org/10.1016/S1386-1425(99)00167-5
  6. Postnikov V.A., Sorokina N.I., Lyasnikova M.S. et al. // Crystals. 2020. V. 10. P. 363. https://doi.org/10.3390/cryst10050363
  7. Quochi F., Saba M., Cordelia F. et al. // Adv. Mater. 2008. V. 20. P. 3017. https://doi.org/10.1002/adma.200800509
  8. Cao M., Zhang C., Cai Z. et al. // Nat. Commun. 2019. V. 10 (756). https://doi.org/10.1038/s41467-019-08573-8
  9. Кулишов А.А. Дис. “Особенности роста кристаллов линейных сопряженных молекул из гомологических семейств аценов и олигофениленов”… к-та физ.-мат. наук. М.: ФНИЦ «Кристаллография и фотоника» РАН, 2022.
  10. Давыдов А.С. Теория поглощения света в молекулярных кристаллах. Киев: Изд-во АН УССР, 1951. 176 c.
  11. Mabbs R., Nijegorodov N., Downey W.S. // Spectrochim. Acta. A. 2003. V. 59. P. 1329. https://doi.org/10.1016/S1386-1425(02)00329-3
  12. Lukeš V., Aquino A.J.A., Lischka H. et al. // J. Phys. Chem. B. 2007. V. 111. P. 7954. https://doi.org/10.1021/jp068496f
  13. Freidzon A.Y., Bagaturyants A.A., Burdakov Y.V. et al. // J. Phys. Chem. C. 2021. V. 125. P. 13002. https://doi.org/10.1021/acs.jpcc.1c02779
  14. Baudour J.-L., Délugeard Y., Rivet P. // Acta Cryst. B. 1978. V. 34. P. 625. https://doi.org/10.1107/s0567740878003647
  15. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 801. https://doi.org/10.1134/s0023476118050247
  16. Cailleau H., Baudour J.L., Meinnel J. et al. // Faraday Discuss. Chem. Soc. 1980. V. 69. P. 7. https://doi.org/10.1039/DC9806900007
  17. Baker K.N., Fratini A.V., Resch T. et al. // Polymer. 1993. V. 34. P. 1571. https://doi.org/10.1016/0032-3861(93)90313-Y
  18. Szymanski A. // Mol. Cryst. 1968. V. 3. P. 339. https://doi.org/10.1080/15421406808083450
  19. Athouël L., Resel R., Koch N. et al. // Synth. Met. 1999. V. 101. P. 627. https://doi.org/10.1016/S0379-6779(98)00761-9
  20. Darwish A.A.A. // Infrared Phys. Technol. 2017. V. 82. P. 96. https://doi.org/10.1016/j.infrared.2017.03.004
  21. Attia A.A., Soliman H.S., Saadeldin M.M. et al. // Synth. Met. 2015. V. 205. P. 139. https://doi.org/10.1016/j.synthmet.2015.04.003
  22. Постников В.А., Кулишов А.А., Борщев О.В. и др. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2021. № 1. С. 28. https://doi.org/10.31857/s1028096021010131
  23. Postnikov V.A., Yurasik G.A., Kulishov A.A. et al. // Crystals. 2023. V. 13. P. 1697. https://doi.org/10.3390/cryst13121697
  24. Postnikov V.A., Sorokina N.I., Kulishov A.A. et al. // ACS Omega. 2024. V. 9. P. 14932. https://doi.org/10.1021/acsomega.3c08543
  25. Постников В.А., Сорокина Н.И., Алексеева О.А. и др. // Кристаллография. 2018. Т. 63. С. 152. https://doi.org/10.7868/s0023476118010150
  26. Parashchuk O.D., Mannanov A.A., Konstantinov V.G. et al. // Adv. Funct. Mater. 2018. V. 28. P. 1800116. https://doi.org/10.1002/adfm.201800116
  27. Постников В.А., Лясникова М.С., Кулишов А.А. и др. // Журнал физ. химии. 2019. Т. 93. С. 1362. https://doi.org/10.1134/s0044453719090188
  28. Rigaku Oxford Diffraction: 1.171.39.46. Rigaku Corporation, Oxford, UK, 2018.
  29. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  30. Palatinus L. // Acta Cryst. A. 2004. V. 60. P. 604. https://doi.org/10.1107/S0108767304022433
  31. Turner M.J., McKinnon J.J., Wolff S.K. et al. CrystalExplorer21: Version 21.5.
  32. Spackman P.R., Turner M.J., McKinnon J.J. et al. // J. Appl. Cryst. 2021. V. 54. P. 1006. https://doi.org/10.1107/S1600576721002910
  33. Smith G.W. // Mol. Cryst. Liq. Cryst. 1979. V. 49. P. 207. https://doi.org/10.1080/00268947908070413
  34. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Журнал физ. химии. 2021. Т. 95. С. 1101. https://doi.org/10.31857/s0044453721070220
  35. Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С. и др. Современная кристаллография. Т. 3. Образование кристаллов. М.: Наука, 1980. 401 с.
  36. Hanshaw W., Nutt M., Chickos J.S. // J. Chem. Eng. Data. 2008. V. 53. P. 1903. https://doi.org/10.1021/je800300x
  37. Roux M.V., Temprado M., Chickos J.S. et al. // J. Phys. Chem. Ref. Data. 2008. V. 37. P. 1855. https://doi.org/10.1063/1.2955570
  38. Китайгородский А.И. Молекулярные кристаллы. М.: Наука, 1971. 424 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences