Peculiarities of formation of defects initiating fatigue faults in granular alloy EP741NP

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The samples of EP741NP alloy destroyed during fatigue testing were investigated by means of transmission electron microscopy, energy-dispersive X-ray microanalysis and electron diffraction. The composition and crystal structure of defects detected at the boundaries of fatigue cracks were studied in details. It was shown that such defects mainly have the morphology of elongated flat "carpets" containing NiO, CTixNb1–x, amorphous AlOx, HfO2, Al2O3, β-Al2O3, Al2MgO4, Co7Mo6, Co3O4, S4Ti3, NbO2, TiO2, as well as amorphous regions containing C, O, Ca, S, Na and Cl. Assumptions were made about the source and of time formation of the studied defects.

Texto integral

Acesso é fechado

Sobre autores

I. Pavlov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC National Research Centre “Kurchatov Institute”

Autor responsável pela correspondência
Email: a.vasiliev56@gmail.com
Rússia, Moscow

M. Artamonov

Lyulka Design Bureau

Email: a.vasiliev56@gmail.com
Rússia, Moscow

V. Artemov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC National Research Centre “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Rússia, Moscow

A. Kumskov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC National Research Centre “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
Rússia, Moscow

E. Marchukov

Lyulka Design Bureau

Email: a.vasiliev56@gmail.com
Rússia, Moscow

A. Vasiliev

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University) Moscow region

Email: a.vasiliev56@gmail.com
Rússia, Moscow; Dolgoprudny

Bibliografia

  1. Williams J.C., Starke E.A. // Acta Mater. 2003. V. 51. P. 5775. https://doi.org/10.1016/j.actamat.2003.08.023
  2. Caron P., Khan T. // Aerosp. Sci. Technol. 1999. V. 3. P. 513. https://doi.org/10.1016/S1270-9638(99)00108-X
  3. Sato A., Chiu Y.-L., Reed R.C. // Acta Mater. 2011. V. 59. P. 225. https://doi.org/10.1016/j.actamat.2010.09.027
  4. Xia W. et al. // J. Mater. Sci. Technol. 2020. V. 44. P. 76. https://doi.org/10.1016/j.jmst.2020.01.026
  5. Gayda J., Gabb T.P., Kantzos P.T. // Superalloys. 2004. P. 323.
  6. Волков А.М. et al. // Технология металлов. 2019. № 1. С. 2. https://doi.org/10.31044/1684-2499-2019-1-0-2-8
  7. Гарибов Г.С., Кошелев В.Я., Шорошев Ю.Г. и др. // Заготовительные производства в машиностроении. 2010. № 1. С. 45.
  8. Belan J. // Mater. Today Proc. 2016. V. 3. P. 936. https://doi.org/10.1016/j.matpr.2016.03.024
  9. Ida S. et al. // Metals (Basel). 2022. V. 12. P. 1817. https://doi.org/10.3390/met12111817
  10. Zhao S. et al. // Mater. Sci. Eng. A. 2003.V. 355. P. 96. https://doi.org/10.1016/S0921-5093(03)00051-0
  11. Трунькин И.Н. и др. // Кристаллография. 2019. Т. 64. С. 539. https://doi.org/10.1134/S002347611904026X
  12. Симс Ч.Т., Норман С.С., Уильям С.Х. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. Т. 1. М.: Металлургия, 1995. 384 с.
  13. Pavlov I.S. et al. // Scr. Mater. 2023. V. 222. P. 115023. https://doi.org/10.1016/j.scriptamat.2022.115023
  14. Myasoedov A.V. et al. // J. Appl. Phys. 2024. V. 135. https://doi.org/10.1063/5.0189133
  15. Ievlev V.M. et al. // Inorg. Mater. 2023. V. 59. P. 1295. https://doi.org/10.1134/S002016852312004X
  16. Кишкин С.Т., Качанов Е.Б., Булыгин И.П. Авиационные материалы. Т. 3. Жаропрочные стали и сплавы. Сплавы на основе тугоплавких металлов. М.: ВИАМ, 1989. 566 с.
  17. ГОСТ Р 52802-2007 Сплавы никелевые жаропрочные гранулируемые. Марки.
  18. Peng Y. et al. // Calphad. 2020. V. 70. P. 101769. https://doi.org/10.1016/j.calphad.2020.101769
  19. Gutiérrez G., Johansson B. // Phys. Rev. B. 2002. V. 65 P. 104202. https://doi.org/10.1103/PhysRevB.65.104202
  20. Beevers C.A., Ross Μ.A.S. // Z. Kristallogr. Cryst. Mater. 1937. V. 97. P. 59. https://doi.org/10.1524/zkri.1937.97.1.59
  21. Kato K., Saalfeld H. // Acta Cryst. B. 1977. V. 33. P. 1596. https://doi.org/10.1107/S0567740877006608
  22. Bettman M., Peters C.R. // J. Phys. Chem. 1969. V. 73. P. 1774. https://doi.org/10.1021/j100726a024
  23. Bettman M., Terner L.L. // Inorg. Chem. 1971. V. 10. P. 1442. https://doi.org/10.1021/ic50101a025
  24. Sasaki S., Fujino K., Takéuchi Y. // Proc. Jpn Acad. Ser. B. 1979. V. 55. P. 43. https://doi.org/10.2183/pjab.55.43
  25. Prostakova V. et al. // Calphad. 2012. V. 37. P. 1. https://doi.org/10.1016/j.calphad.2011.12.009
  26. Johnson B., Jones J.L. Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier, 2019. 570 p. https://doi.org/10.1016/B978-0-08-102430-0.00002-4
  27. R Taylor J. et al. // Calphad. 1992. V. 16. P. 173. https://doi.org/10.1016/0364-5916(92)90005-I
  28. Alper A.M. et al. // J. Am.Ceram. Soc. 1962. V. 45. P. 263. https://doi.org/10.1111/j.1151-2916.1962.tb11141.x
  29. Davydov A., Kattner U.R. // J. Phase Equilibria. 1999. V. 20. P. 5. https://doi.org/10.1361/105497199770335893
  30. Chen M., Hallstedt B., Gauckler L.J. // J. Phase Equilibria. 2003. V. 24. P. 212. https://doi.org/10.1361/105497103770330514
  31. Murray J.L. // Bull. Alloy Phase Diagrams. 1986. V. 7. P. 156. https://doi.org/10.1007/BF02881555
  32. Pérez R.J., Massih A.R. // J. Nucl. Mater. 2007. V. 360. P. 242. https://doi.org/10.1016/j.jnucmat.2006.10.008
  33. Okamoto H. // J. Phase Equilibria Diffus. 2011. V. 32. P. 473. https://doi.org/10.1007/s11669-011-9935-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Bright-field TEM images of the EP741NP nickel alloy and electron diffraction patterns from sample regions (a, b), fracture boundaries are indicated by white arrows, a – dotted lines indicate an example of the γ´-phase, gray arrows indicate a cluster consisting of crystalline and amorphous precipitates, b – gray arrow indicates the precipitate CTixNb1–x. Electron diffraction pattern obtained from the γ- and γ´-phases (c), electron diffraction pattern obtained from CTixNb1–x (d).

Baixar (342KB)
3. Fig. 2. Dark-field STEM image of a defect (a), element distribution maps constructed using the ERM method (b-I–b-XIII).

Baixar (749KB)
4. Fig. 3. HRTEM image of the boundary between the cluster and the nickel alloy (a). Two-dimensional Fourier spectra of the areas marked with numbers 1 (b), 2 (c), 3 (d).

Baixar (602KB)
5. Fig. 4. Dark-field STEM image of a HfO2 particle with Al2O3 inclusions shown by arrows (a); corresponding electron diffraction patterns: b – HfO2, c – α-Al2O3.

Baixar (528KB)
6. Fig. 5. HR TEM images of β-aluminum oxide (region 1) and spinel (region 2) (a); the corresponding Fourier spectra (b, c).

Baixar (786KB)
7. Fig. 6. HRTEM images of Co7Mo6 (a) and Co3O4 (b). The insets show the corresponding electron diffraction pattern and Fourier spectrum.

Baixar (599KB)
8. Fig. 7. Dark-field STEM image (a) and element distribution maps constructed by the EDX method (b-I–b-V). Electron diffraction patterns corresponding to S4Ti3 (c), NbO2 (d), and TiO2 (d).

Baixar (691KB)
9. Fig. 8. Dark-field STEM image (a) and element distribution maps constructed by the ERM method (b-I–b-V).

Baixar (703KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024