Unique findings of Phoma-like fungi associated with soybean

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ascochyta leaf blight of soybean is a widespread disease caused by several closely related Phoma-like species, this disease often leads to significant crop losses. Among Phoma-like species from Didymellaceae family, the most frequently associated with symptomatic soybean tissues are species of the genera Boeremia and Didymella. Currently reliable species identification in Didymellaceae relies on polyphasic approach based on consolidated species concept and combined molecular phylogenetic, micromorphological and cultural features. At least three loci are commonly used for reconstruction of the molecular phylogeny of Didymellaceae: internal transcribed spacer (ITS) of the ribosomal DNA, partial RNA-polymerase II gene (rpb2), and β-tubulin (tub2). As a result of long-term phytosanitary monitoring of soybean crops, soybean leaves with symptoms of Ascochyta blight were collected from major soybean producing areas of Russia. From surface sterilized plant tissues more than 100 isolates of Phoma-like fungi were obtained and stored in the collection of pure cultures of the Laboratory of Mycology and Phytopathology (MF, All-Russian Institute of Plant Protection). Most of them, as a result of multilocus phylogenetic analysis, were identified as Boeremia and Didymella species. Eight isolates were identified as species of other genera, suspected to be rare findings. The aim of this study was to identify these eight isolates based on multilocus phylogenetic analysis, as well micromorphological, cultural, and pathogenicity data. Multilocus phylogenetic analysis has resulted in identification of all eight isolates to species level. Single isolate from the Ryazan region was Neoascochyta graminicola. Three other from three different districts of the Amur region were Remotididymella capsici. Two isolates from the Primorskiy territory and Amur region were Stagonosporopsis heliopsidis. Another two from two districts of the Amur region were S. stuijvenbergii. Pathogenicity tests have resulted in conclusion, that all studied isolates were not pathogenic for soybean leaves. Probably, these Phoma-like species are associate with soybean as saprophytes or endophytes. For all these Phoma-like species Glycine max was detected as substrate for the first time. Neoascochyta graminicola is widespread in Europe in association with Poaceae plants. There are only two findings of Remotididymella capsici in the world, both from leaves of Capsicum annuum. First finding was made in the former USSR in 1977 and was identified based on only morphological features. Second findings was collected in the Fiji and verified with multilocus phylogenetic analysis. Stagonosporopsis heliopsidis isolates were revealed in the USA, Canada, Netherlands and Russia and this fungus was believed to be specific for Asteraceae plants. Isolates of Stagonosporopsis stuijvenbergii are known only from soil in the Netherlands. Thus, such species as Neoascochyta graminicola and Stagonosporopsis stuijvenbergii were revealed in the Russia for the first time. Studied Remotididymella capsici isolates were first confirmed findings of this fungus in Russia. Additionally to detailed phylogenetic data, the manuscript is supplement with a detailed description of the cultural and micromorphological features of all species.

全文:

受限制的访问

作者简介

М. Gomzhina

All-Russian Institute of Plant Protection

编辑信件的主要联系方式.
Email: gomzhina91@mail.ru
俄罗斯联邦, St. Petersburg

E. Gasich

All-Russian Institute of Plant Protection

Email: elena_gasich@mail.ru
俄罗斯联邦, St. Petersburg

参考

  1. Abramov I.N. Fungal diseases of soybean in the Russian Far East. Vladivostok, 1931. (In Russ.)
  2. Abramov I.N. Diseases of agricultural crops in the Russian Far East. Khabarovsk, 1938. (In Russ.)
  3. Aveskamp M.M., de Guyter J., Crous P.W. Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity. 2008. V. 31. P. 1—18.
  4. Aveskamp M.M., Verkley G.J.M., de Gruyter J. et al. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia. 2009. V. 101 (3). P. 363—382. https://doi.org/10.3852/08-199
  5. Aveskamp M.M., de Gruyter J., Woudenberg J.H.C. et al. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010. V. 65. P. 1—60. https://doi.org/10.3114/sim.2010.65.01
  6. Boerema G.H., Gruyter J., Noordeloos M.E. et al. Phoma identification Manual. CABI Publishing, L., 2004.
  7. Bondartseva-Monteverde V.N. Ascochyta capsici. Monitor Phytopath. Sect. Chief Bot. Gard. R.S.F.S.R. 1923. V. 12. P. 70—72. (In Russ.)
  8. Bondartseva-Monteverde V.N., Vasilevskiy N.I. To biology and morphology of several Ascochyta species associated with Fabaceae. Trudy botanicheskogo instituta AN SSSR. Ser. 2. Sporovye Rasteniya. 1940. V. 4. P. 345—376. (In Russ.)
  9. Boyle J.S., Lew A.M. An inexpensive alternative to glassmilk for DNA purification. Trends Genetics. 1995. V. 11 (1). P. 8. https://doi.org/10.1016/S0168-9525(00)88977-5
  10. Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999. V. 91. P. 553—556. https://doi.org/10.2307/3761358
  11. Chen Q., Jiang J.R., Zhang G.Z. et al. Resolving the Phoma enigma. Stud. Mycol. 2015. V. 82. P. 137—217. https://doi.org/ 10.1016/j.simyco.2015.10.003
  12. Chen Q., Hou L.W., Duan W.J. et al. Didymellaceae revisited. Stud. Mycol. 2017. V. 87. P. 105—259. https://doi.org/10.1016/j.simyco.2017.06.002
  13. Crous P.W., Hawksworth D.L., Wingfield M.J. Identifying and naming plant-pathogenic fungi: past, present, and future. Ann. Rev. Phytopathol. 2015. V. 53. P. 247—267. https://doi.org/10.1146/annurev-phyto-080614-120245
  14. Deb D., Khan A., Dey N. Phoma diseases: epidemiology and control. Plant Pathol. 2020. V. 69 (7). P. 1203—1217. https://doi.org/10.1111/ppa.13221
  15. Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990. V. 12. P. 13—15. https://doi.org/10.1007/978-3-642-83962-7_18
  16. Hou L.W., Groenewald J.Z., Pfenning L.H. et al. The Phoma-like dilemma. Stud. Mycol. 2020a. V. 96. P. 309—396. https://doi.org/10.1016/j.simyco.2020.05.001
  17. Hou L., Hernández-Restrepo M., Groenewald J.Z. et al. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys. 2020b. V. 65. P. 49—99.https://doi.org/10.3897/ mycokeys.65.47704
  18. Gomzhina M.M., Gannibal Ph.B. Modern systematics of the genus Phoma sensu lato. Mikologiya i Fitopatologiya. 2017. V. 51 (5). P. 268—275. https://doi.org/10.31857/S0026364821050056 (In Russ.)
  19. Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. New species and new findings of Phoma-like fungi (Didymellaceae) associated with some Asteraceae in Russia. Nova Hedwigia. 2020а. V. 111 (1—2). P. 131—149. https://doi.org/10.1127/nova_hedwigia/2020/0586
  20. Gomzhina M.M., Gasich E.L., Khlopunova L.B. et al. Paraphoma species associated with Convolvulaceae. Mycol. Progress. 2020b. V. 19. P. 185—194. https://doi.org/10.1007/s11557-020-01558-8
  21. Gomzhina M.M., Gasich E.L., Gagkaeva T. Yu. et al. Biodiversity of fungi inhabiting European blueberry in North-Western Russia and in Finland. Dokl. Biol. Sci. 2022. V. 507. P. 439—453. https://doi.org/10.1134/S0012496622060047
  22. Gomzhina M.M., Gasich E.L. Plenodomus species infecting oilseed rape in Russia. Vestnik zashchity rasteniy. 2022. V. 105 (3). P. 135—147. https://doi.org/10.31993/2308-6459-2022-105-3-15425
  23. Gunina A.M. Diseases of soybean in the Amur region. Vsesoyuznoe soveschanie po voprosam biologii i vozdelyvaniya soi v Sovetskom Soyuze. Blagoveschensk, 1967. (In Russ.)
  24. Kövics G.J., Sándor E., Rai M.K. et al. Phoma-like fungi on soybean. Crit. Rev. Microbiol. 2014. V. 40 (1). P. 49—62. https://doi.org/10.3109/1040841X.2012.755948
  25. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018. V. 35. P. 1547—1549. https://doi.org/10.1093/molbev/msy096
  26. Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 1999. V. 16. P. 1799—1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  27. Lord E., Leclercq M., Boc A. et al. Armadillo 1.1: An original workflow platform for designing and conducting phylogenetic analysis and simulations. PLOS One. 2012. V. 7 (1). P. e29903. https://doi.org/10.1371/journal.pone.0029903
  28. Minh B.Q., Schmidt H.A., Chernomor O., et al. IQ-TREE2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020. V. 35 (7). P. 1530—1534. https://doi.org/10.1093/molbev/msaa015
  29. Muravieva M.F. Features of the development of soybean diseases in the Khabarovsk Territory and resistance of various varieties to them. Sibirskiy vestnik selskokhozyaystvennoy nauki. 1977. V. 5. P. 54—58. (In Russ.)
  30. Naumova E.S. Fungal biodiversity in soybean in the Voronezh region. Mikologiya i fitopatologiya. 1988. V. 22 (3). P. 217—223. (In Russ.)
  31. Nikitina A.I. Dangerous soybean diseases in the Russian Far East. Zashchita rasteniy. 1962. V. 7. P. 37—40. (In Russ.)
  32. Nekrasov E.V., Shumilova L.P., Gomzhina M.M. et al. Diversity of endophytic fungi in annual shoots of Prunus mandshurica (Rosaceae) in the South of Amur Region, Russia. Diversity. 2022. V. 14:1124. https://doi.org/10.3390/d14121124
  33. Nelen E.S. New pycnidial fungi in the south of the Russian Far East. Novosti sistematiki nizshikh rasteniy. 1977. V. 14. P. 105. (In Russ.)
  34. Rai M., Zimowska B., Kövics G.J. The genus Phoma: what we know and what we need to know? In: M. Rai, B. Zimowska, G.J. Kövics (eds). Phoma: diversity, taxonomy, bioactivities, and nanotechnology. Sprin-ger, Cham, 2022.
  35. Samson R.A., Hoekstra E.S., Frisvad J.C. et al. Introduction to food- and airborne fungi. Sixth edn. Centraal bureau voor schimmel cultures, Utrecht, 2002.
  36. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA. 1977. V. 74 (12). P. 5463—5467. https://doi.org/10.1073/pnas.74.12.5463
  37. Sung G.H., Sung J.M., Hywel-Jones N.L. et al. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol. Phylogenet. Evol. 2007. V. 31. P. 1204—1223. https://doi.org/10.1016/j.ympev.2007.03.011
  38. Thompson J.D., Gibson T.J., Plewniak F. et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997. V. 24. P. 4876—4882. https://doi.org/10.1093/nar/25.24.4876
  39. White T.J., Bruns T., Lee S. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. In: M.A. Innis etc. (eds). A guide to methods and applications. San Diego, Acad. Press, 1990. pp. 315—322.
  40. Yang A.L., Chen L., Fang K. et al. Remotididymella ageratinae sp. nov. and Remotididymella anemophila sp. nov., two novel species isolated from the invasive weed Ageratina adenophora in PR China. IJSEM. 2021. V. 71 (1). Art. 004572. https://doi.org/10.1099/ijsem.0.004572
  41. Zaostrovnykh V.I., Kadurov A.A., Dubovitskaya L.K. et al. Monitoring of the species composition of soybean diseases in different sowing zones. Dalnevostochnyy agrarnyy vestnik. 2018. V. 4 (48). P. 51—67. (In Russ.)
  42. Zhao P., Crous P.W., Hou L.W. et al. Fungi of quarantine concern for China I: Dothideomycetes. Persoonia. 2021. V. 47. P. 45—105. https://doi.org/10.3767/persoonia.2021.47.02
  43. Zhukovskaya S.A. Mycoflora of soybean [Glycine max (L.) Merr.] in the Soviet Far East. In: Tikhookeanskiy nauchyy kongress. Komitet nauchnaya botanika, Moscow, 1979, pp. 23—24. (In Russ.)
  44. Абрамов И.Н. (Abramov) Грибные болезни соевых бобов на Дальнем Востоке. Владивосток, 1931. 84 с.
  45. Абрамов И.Н. (Abramov) Болезни сельскохозяйственных растений на Дальнем Востоке. Хабаровск, 1938. 286 с.
  46. Бондарцева-Монтеверде В.Н., Васильевский Н.И. (Bondartseva-Monteverde, Vasilyevskiy) К биологии и морфологии некоторых видов Ascochyta на бобовых // Тр. ботанического ин-та АН СССР. Сер. 2. Споровые растения. 1940. Т. С. 345—376.
  47. Гомжина М.М., Ганнибал Ф.Б. (Gomzhina, Gannibal) Современная систематика грибов рода Phoma sensu lato // Микология и фитопатология. 2017. Т. 51. № 5. С. 268—275.https://doi.org/10.31857/S0026364821050056
  48. Гунина А.М. (Gunina) Болезни сои в Амурской области // Всесоюзное совещание по вопросам биологии и возделывания сои в Советском Союзе. Благовещенск, 1967. C. 73—80.
  49. Жуковская С.А. (Zhukovskaya) Микофлора сои [Glycine max (L.) Merr.] на Советском Дальнем Востоке // В кн.: Тихоокеанский XIV научный конгресс. М.: Комитет Научная Ботаника, 1979. C. 23—24.
  50. Заостровных В.И., Кадуров А.А., Дубовицкая Л.К. и др. (Zaostrovnykh et al.) Мониторинг видового состава болезней сои в различных зонах соесеяния // Дальневосточный аграрный вестник. 2018. Т. 4(48). С. 51—67.
  51. Муравьева М.Ф. (Muravyova) Особенности развития болезней сои в Хабаровском крае и устойчивость к ним различных сортов // Сибирский вестник сельскохозяйственной науки. 1977. Т. 5. С. 54—58.
  52. Наумова Е.С. (Naumova) Видовой состав грибов на сое в условиях Воронежской области // Микология и фитопатология. 1988. Т. 22. № 3. С. 217—223.
  53. Нелен Е.С. (Nelen) Новые виды пикнидиальных грибов с юга Дальнего Востока // Новости систематики низших растений. 1977. Т. 14. С. 105.
  54. Никитина А.И. (Nikitina) Опасные болезни сои на Дальнем Востоке // Защита растений. 1962. Т. 7. С. 37—40.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Soybean leaves with symptoms of ascochyta blight, from which the studied isolates were isolated: A - Ryazan region, isolated Neoascochyta graminicola MF 1.42, 2020 (LEP 123703); B — Amur region, isolated Remotididymella capsici MF 1.28, 2019 (LEP 123702); B - Amur region, isolated Stagonosporopsis stuijvenbergii MF 1.30, 2019 (LEP 123704).

下载 (127KB)
3. Fig. 2. Combined phylogenetic tree of the species Neoascochyta, Remotididymella, Stagonosporopsis, constructed by the ML method, based on the nucleotide sequences of ITS, rpb2 and tub2. Numerical values of bootstrap support obtained by the ML (≥ 70), MP ≥ 70) and Bayesian statistics (≥ 0.7) methods are given at the nodes of the dendrogram branches, respectively. Numbers of type or representative strains are indicated by the letters T or R. Numbers of tested isolates are indicated in blue.

下载 (1018KB)
4. Fig. 3. Morphological features of Neoascochyta graminicola MF 1.42: A–E - cultures (A - on KSA, 7 days; B - on OA, 7 days; C - on MEA, 7 days; D - on KSA, 14 days; E - on OA, 14 days; E - on MEA, 14 days); F, Z - pycnidia; I - the inner wall of the pycnida, lined with conidiogenic cells; K - conidia. The left half is the top of the colony, the right half is the reverse of the colony. Scale: F - 500 µm; W - 100 µm; I and K - 20 µm.

下载 (924KB)
5. Fig. 4. Morphological features of Remotididymella capsici MF 1.28: A–E - cultures (A - on KSA, 7 days; B - on OA, 7 days; C - on MEA, 7 days; D - on KSA, 14 days; E - OA , 14 days; E - MEA, 14 days); F, H - fruiting bodies; And - immature bag; K - ascospores; L - bag. The left half is the top of the colony, the right half is the reverse of the colony. Scale: F - 1 mm; W - 100 µm; I and K - 20 µm.

下载 (1MB)
6. Fig. 5. Morphological features of Stagonosporopsis heliopsidis MF 1.25: A–E — cultures (A — on KSA, 7 days; B — on OA, 7 days; C — on MEA, 7 days; D — on KSA, 14 days; E — OA , 14 days; E - MEA, 14 days); F–I—pycnidia; K - conidiogenic cell; L - conidia. The left half is the top of the colony, the right half is the reverse of the colony. Scale: F - 2 mm; H, I - 50 µm; K, L - 20, microns.

下载 (1MB)
7. Fig. 6. Morphological features of Stagonosporopsis stuijvenbergii MF 6.1: A–E - cultures (A - on KSA, 7 days; B - on OA, 7 days; C - on MEA, 7 days; D - on KSA, 14 days; E - OA , 14 days; E - MEA, 14 days); F, Z - pycnidia; And - conidia. The left half is the top of the colony, the right half is the reverse of the colony. Scale: F - 5 mm; W - 100 µm; I - 20, microns.

下载 (1MB)
8. Fig. 7. Results of the pathogenicity test, pieces of soybean leaves, Selecta 201 variety, 14 days after inoculation. Inoculation options: A - negative control, sterile water; B — mycelial suspension of isolate MF 6.1 Stagonosporopsis stuijvenbergii; B — positive control, mycelial suspension of Cercospora cf. sigesbeckiae MF 3.13. The first row in each Petri dish is the inoculum applied to the upper side of the intact segment. Second row - inoculum is applied to the upper side of the segment with preliminary wounding. Third row - inoculum is applied to the underside of the intact segment. Fourth row - inoculum is applied to the underside of the segment with preliminary wounding.

下载 (296KB)

版权所有 © Russian Academy of Sciences, 2024