Analysis of electrophysical profiles of plankton and biofilm cells on the model of Azospirillum baldaniorum bacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Biofilm formation is a widespread phenomenon in the world of microbes. They can affect human and animal health, cause damage to various industries, and at the same time can be useful in areas such as wastewater treatment or increasing the bioavailability of nutrients for plants. This actualizes the development of biofilm research methods. In this paper, an optical sensor method for indicating bacterial biofilm formation taking into account biological variability is described for the first time using the example of plant growth-stimulating rhizobacteria of the genus Azospirillum. A correlation was found between changes in the electrophysical parameters recorded by the sensor system and morphological features of bacteria from planktonic and/or biofilm cultures: the presence of motor organelles (flagella), polymorphism and ultrastructure of cellular forms. It was found that the profile of microbial cells recorded by the optical system in planktonic and biofilm forms differs significantly. When comparing cells of different strains (parent strain and its derivatives) or planktonic and biofilm bacteria, the variables recorded by the electro-optical sensor system are consistent with the changes in the micro- and ultrastructure of bacteria recorded by us using other methods. The results of the analysis of the electrophysical profiles of A. baldaniorum Sp245 can be used as a reference for identifying the specificity of the interaction of biofilm cells of this strain with various components of the root surface of the putative plant partner using an optical sensor system.

Full Text

Restricted Access

About the authors

A. V. Sheludko

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Author for correspondence.
Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

S. S. Evstigneeva

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

E. M. Telesheva

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

Yu. A. Filip’echeva

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

L. P. Petrova

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

D. I. Mokeev

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

I. V. Volokhina

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

I. V. Borisov

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: shel71@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

V. D. Bunin

EloSystem GbR

Email: shel71@yandex.ru
Germany, Berlin 13407

O. I. Guliy

Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”

Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

References

  1. Гулий О. И., Антонюк Л. П., Игнатов В. В., Игнатов О. В. Динамика изменений электрофизических свойств клеток Azospirillum brasilense Sp7 при их связывании с агглютинином зародыша пшеницы // Микробиология. 2008. Т. 77. С. 782‒787.
  2. Guliy O. I., Antonyuk L. P., Ignatov V. V., Ignatov O. V. Dynamics of the changes of electrophysical properties of Azospirillum brasilense Sp7 cells at their binding with wheat germ agglutinin // Microbiology (Moscow). 2008. V. 77. P. 695–699.
  3. Шелудько А. В., Широков А. А., Соколова М. К., Соколов О. И., Петрова Л. П., Матора Л. Ю., Кацы Е. И. Колонизация корней пшеницы бактериями Azospirillum brasilense с различной подвижностью // Микробиология. 2010. Т. 79. С. 696–704.
  4. Shelud’ko A.V., Shirokov A. A., Sokolova M. K., Sokolov O. I., Petrova L. P., Matora L.Yu., Katsy E. I. Wheat root colonization by Azospirillum brasilense strains with different motility // Microbiology (Moscow). 2010. V. 79. P. 688–695.
  5. Шелудько А. В., Филипьечева Ю. А., Шумилова Е. М., Хлебцов Б. Н., Буров А. М., Петрова Л. П., Кацы Е. И. Изменения в формировании биопленок у flhB1 мутанта бактерии Azospirillum brasilense Sp245, лишенного жгутиков // Микробиология. 2015. Т. 84. С. 175–183.
  6. Shelud’ko A.V., Filip’echeva Y.A., Shumilova E. M., Khlebtsov B. N., Burov A. M., Petrova L. P., Katsy E. I. Changes in biofilm formation in the nonflagellated flhB 1 mutant of Azospirillum brasilense Sp245 // Microbiology (Moscow). 2015. V. 84. P. 144–151.
  7. Шелудько А. В., Мокеев Д. И., Евстигнеева С. С., Филипьечева Ю . А., Буров А. М., Петрова Л. П., Пономарева Е. Г., Кацы Е. И. Анализ ультраструктуры клеток в составе биопленок бактерий Azospirillum brasilense // Микробиология. 2020. Т. 89. С. 59–73.
  8. Shelud’ko A.V., Mokeev D. I., Evstigneeva S. S., Filip’echeva Yu.A., Burov A. M., Petrova L. P., Ponomareva E. G., Katsy E. I. Cell ultrastructure in biofilms of Azospirillum brasilense // Microbiology (Moscow). 2020. V. 89. P. 50–63.
  9. Шумилова Е. М., Шелудько А. В., Филипьечева Ю. А., Евстигнеева С. С., Пономарева Е. Г., Петрова Л. П., Кацы Е. И. Изменение свойств клеточной поверхности и эффективности формирования биопленок у мутантов бактерии Azospirillum brasilense Sp245 по предполагаемым генам липидного метаболизма mmsB1 и fabG1 // Микробиология. 2016. Т. 85. С. 162‒170.
  10. Shumilova E. M., Shelud’ko A.V., Filip’echeva Y.A., Evstigneeva S. S., Pononareva E. G., Petrova L. P., Katsy E. I. Changes in cell surface properties and biofilm formation efficiency in Azospirillum brasilense Sp245 mutants in the putative genes of lipid metabolism mmsB1 and fabG1 // Microbiology (Moscow). 2016. V. 85. P. 172‒179.
  11. Baldani V. L.D., Baldani J. I., Döbereiner J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat // Can. J. Microbiol. 1983. V. 29. P. 924–929.
  12. Bai W., Zhao K. S., Asami K. Dielectric properties of E. coli cell as simulated by the three-shell spheroidal model // Biophys. Chem. 2006. V. 122. P. 136‒142.
  13. Bogino P. C., Oliva M. M., Sorroche F. G., Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations // Int. J. Mol. Sci. 2013. V. 14. P. 15838–15859.
  14. Cámara M., Green W., MacPhee C.E., Rakowska P. D., Raval R., Richardson M. C., Slater-Jefferies J., Steventon K., Webb J. S. Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge / / Biofilms Microbiomes. 2022. V. 8. Art. 42.
  15. Dos Santos Ferreira N., Sant’Anna F.H., Reis V. M., Ambrosini A., Gazolla Volpiano C., Rothballer M., Schwab S., Baura V. A., Balsanelli E., Pedrosa F. O., Pereira Passaglia L. M., Maltempi de Souza E., Hartmann A., Cassan F., Zilli J. E. Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 6203‒6212.
  16. Döbereiner J., Day J. M. Associative symbiosis in tropical grass: Characterization of microorganisms and dinitrogen fixing sites // Symposium on Nitrogen Fixation / Eds. Newton W. E., Nijmans C. J. Pullman: Washington State University Press, 1976. P. 518–538.
  17. Filip’echeva Y., Shelud’ko A., Prilipov A., Telesheva E., Mokeev D., Burov A., Petrova L., Katsy E. Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella // Folia Microbiol. 2018. V. 63. P. 147–153.
  18. Guliy O. I., Evstigneeva S. S., Bunin V. D. Electrical sensor system for in vitro bacteria biofilm diagnostics // Biosens. Bioelectron. X. 2022. V. 11. Art. 100174.
  19. Guttenplan S. B., Kearns D. B. Regulation of flagellar motility during biofilm formation // FEMS Microbiol. Rev. 2013. V. 37. P. 849–871.
  20. Hartmann R., Jeckel H., Jelli E., Singh P. K., Vaidya S., Bayer M., Rode D. K.H., Vidakovic L., Díaz-Pascual F., Fong J. C.N., Dragoš A., Lamprecht O., Thöming J. G., Netter N., Haussler S., Nadell C. D., Sourjik V., Kovács A. T., Yildiz F. H., Drescher K. Quantitative image analysis of microbial communities with BiofilmQ // Nat. Microbiol. 2021. V. 6. P. 151–156.
  21. Hemdan B. A., El-Taweel G.E., Goswami P., Pant D., Sevda S. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention // World J. Microbiol. Biotechnol. 2021. V. 37. Art. 36.
  22. Junne S., Cruz-Bournazou M.N., Angersbach A., Götz P . Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations // J. Ind. Microbiol. Biotechnol. 2010. V. 37. P. 935‒942.
  23. Moens S., Schloter M, Vanderleyden J. Expression of the structural gene, laf1 , encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7 // J. Bacteriol. 1996. V. 178. P. 5017–5019.
  24. O’Toole G.A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis // Mol. Microbiol. 1998. V. 28. P. 449–461.
  25. Otto M. Staphylococcal biofilms // Curr. Top. Microbiol. Immunol. 2008. V. 322. P. 207–228.
  26. Salcedo F., Pereyra C. M., Arruebarrena Di Palma A., Lamattina L., Creus C. M. Methods for studying biofilms in Azospirillum and other PGPRs // Handbook for Azospirillum / Eds. Cassán F., Okon Y., Creus C. Springer, Cham., 2015. P. 199‒229.
  27. Sambrook J., Fritsch E. F., Maniatis T. Molecular cloning: a laboratory manual, 2 nd edn. New York: Cold Spring Harbor Laboratory, 1989.
  28. Schelud’ko A.V., Makrushin K. V., Tugarova A. V., Krestinenko V. A., Panasenko V. I., Antonyuk L. P., Katsy E. I. Changes in motility of the rhizobacterium Azospirillum brasilense in the presence of plant lectins // Microbiol. Res. 2009. V. 164. P. 149‒156.
  29. Shelud’ko A.V., Filip’echeva Y.A., Telesheva E. M., Yevstigneeva S. S., Petrova L. P., Katsy E. I. Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions // World J. Microbiol. Biotechnol. 2019. V. 35. Art. 19.
  30. Skvortsov I. M., Ignatov V. V. Extracellular polysaccharides and polysaccharide-containing biopolymers from Azospirillum species: properties and the possible role in interaction with plant roots // FEMS Microbiol. Lett. 1998 V. 165. P. 223‒229.
  31. Van De Merwe W. P., Czégé J., Milham M. E., Bronk B. V. Rapid optically based measurements of diameter and length for spherical or rod-shaped bacteria in vivo // Appl. Opt. 2004. V. 43. P. 5295‒5302.
  32. Wang D., Xu A., Elmerich C., Ma L. Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions // ISME J. 2017. V. 11. P. 1602–1613.
  33. Wisniewski-Dyé F., Borziak K., Khalsa-Moyers G., Alexandre G., Sukharnikov L. O., Wuichet K., Hurst G. B., McDonald W.H., Robertson J. S., Barbe V., Calteau A., Rouy Z., Mangenot S., Prigent-Combaret C., Normand P., Boyer M., Siguier P., Dessaux Y., Elmerich C., Condemine G., Krishnen G., Kennedy I., Paterson A. H., Gonzalez V., Mavingui P., Zhulin I. B. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments // PLoS Genet. 2011. V. 7. Art. e1002430.
  34. Yagoda-Shagam J., Barton L. L., Reed W. P., Chiovetti R. Fluorescein isothiocyanate-labeled lectin analysis of the surface of the nitrogen-fixing bacterium Azospirillum brasilense by flow cytometry // Appl. Environ. Microbiol. 1988. V. 54. P. 1831‒1837.
  35. Yegorenkova I. V., Konnova S. A., Sachuk V. N., Ignatov V. V. Azospirillum brasilense colonisation of wheat roots and the role of lectin–carbohydrate interactions in bacterial adsorption and root-hair deformation // Plant Soil. 2001. V. 231. P. 275‒282.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A ‒ Transmission electron microscopy of A. baldaniorum Sp245 and Sp245.1063 cells from 20 h liquid cultures (1) or biofilms (2) formed on glass under liquid medium during 6 days of cultivation. B ‒ Transmission electron microscopy of ultrathin sections of A. baldaniorum Sp245 cells from biofilm fragments formed under liquid medium on the glass surface during 6 days of cultivation. Panel (a) shows “vegetative” and “long” cells, panel (b) shows “cyst-like forms”. Scale bar ‒ 1 μm.

Download (63KB)
3. Fig. 2. A ‒ Effect of medium composition on the rate of movement of planktonic cells of A. baldaniorum Sp245 in liquid medium. B ‒ Electrophysical profiles of bacteria from planktonic 20-h liquid cultures and 6-day biofilms. C ‒ Distribution of cells by length. The average length of A. baldaniorum Sp245 and Sp245.1063 cells, respectively, in 20-h planktonic liquid cultures was (2.6 ± 0.3) and (2.1 ± 0.2) μm, (2.8 ± 0.3) and (2.8 ± 0.2) μm in the case of 6-day biofilms. D ‒ Dynamics of biomass accumulation in biofilms formed by A. baldaniorum Sp245 and Sp245.1063 on glass under liquid LB. OP 590 – optical density of crystal violet desorbed after biofilm staining. D – Results of changes in the electro-optical signal of cells at a frequency of 740 kHz. E – Effect of pronase and sodium periodate on the biomass of 6-day-old biofilms formed on glass under liquid LB medium. % – percentage ratio of the optical density of the dye desorbed from stained films after their incubation in pronase or sodium periodate solution to the same indicator without treatment. One-way analysis of variance (ANOVA) of the data in panels (D) and (E) was performed comparing the indicators for each strain (lowercase letters) or comparing the indicators of Sp245 and Sp245.1063 (uppercase letters); different letters denote statistically significant differences; a, a, A and A are the mean values ​​with the smallest magnitude.

Download (71KB)
4. Fig. 3. Atomic force microscopy results. AFM images of 6-day biofilms of the A. baldaniorum Sp245 strain formed on the liquid LB/glass (A, B, D, E) and liquid LB/air (B, E) interfaces.

Download (49KB)

Copyright (c) 2024 Russian Academy of Sciences