Effect of silver nanoclusters on the copper resistance of Achromobacter insolitus LCu2
- 作者: Burygin G.L.1,2,3, Astankova A.S.1,2, Chumakov D.S.1, Kryuchkova Y.V.1,3
-
隶属关系:
- Saratov Scientific Centre of the Russian Academy of Sciences
- Saratov State University
- Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov
- 期: 卷 94, 编号 2 (2025)
- 页面: 195–198
- 栏目: SHORT COMMUNICATIONS
- URL: https://permmedjournal.ru/0026-3656/article/view/680841
- DOI: https://doi.org/10.31857/S0026365625020081
- ID: 680841
如何引用文章
详细
Abstract. In this work, the resistance of Achromobacter insolitus LCu2 cells to copper (II) was reduced by adding 1 μM silver nanoclusters to the culture medium: the maximum tolerable concentration decreased by 4 times, the minimum inhibitory concentration – by 25 times. It is assumed that nanoclusters disrupt the functioning of the copper (II) efflux system through binding to the CusC protein, which leads to a partial loss of the ability of bacteria to export excess copper (II) cations from cells.
全文:

作者简介
G. Burygin
Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov
编辑信件的主要联系方式.
Email: burygingl@gmail.com
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049; Saratov, 410012; Saratov, 410012A. Astankova
Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University
Email: burygingl@gmail.com
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049; Saratov, 410012D. Chumakov
Saratov Scientific Centre of the Russian Academy of Sciences
Email: burygingl@gmail.com
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049Y. Kryuchkova
Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov
Email: burygingl@gmail.com
Institute of Biochemistry and Physiology of Plants and Microorganisms
俄罗斯联邦, Saratov, 410049; Saratov, 410012参考
- Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Chia-Chun Hung, O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3 // Nature. 2024. V. 630. P. 493–500.
- Cervantes C., Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi // FEMS Microbiol. Rev. 1994. V. 14. P. 121–137.
- Draviana H. T., Fitriannisa I., Khafid M., Krisnawati D. I., Widodo, Lai C. H., Fan Y. J., Kuo T. R. Size and charge effects of metal nanoclusters on antibacterial mechanisms // J. Nanobiotechnol. 2023. V. 21. Art. 428. https://doi.org/10.1186/s12951-023-02208-3
- Franke S., Grass G., Rensing C., Nies D. H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli // J. Bacteriol. 2003. V. 185. P. 3804–3812.
- Hernández-Montes G., Argüello J. M., Valderrama B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria // BMC Microbiol. 2012. V. 12. Art. 249. https://doi.org/10.1186/1471-2180-12-249
- Kryuchkova Y. V., Neshko A. A., Gogoleva N. E., Balkin A. S., Safronova V. I., Kargapolova K. Y., Shagimardanova E. I., Gogolev Y. V., Burygin G. L. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2 // Antonie van Leeuwenhoek. 2024. V. 117. Art. 105. https://doi.org/10.1007/s10482-024-01989-3
- Magnani D., Solioz M. How bacteria handle copper // Molecular microbiology of heavy metals. Microbiology monographs. V. 6. / Eds. Nies D. H., Silver S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 259–285. https://doi.org/10.1007/7171_2006_081
- Tkachenko O. V., Evseeva N. V., Boikova N. V., Matora L. Y., Burygin G. L., Lobachev Y. V., Shchyogolev S. Y. Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum // Agron. Sustain. Dev. 2015. V. 35. P 1167–1174.
- Tumskiy R., Khlebtsov B., Tumskaia A., Evstigneeva S., Antoshkina E., Zakharevich A., Khlebtsov N. G. Enhanced antibacterial activity of novel fluorescent glutathione-capped Ag nanoclusters // Int. J. Mol. Sci. 2023. V. 24. Art. 8306. https://doi.org/10.3390/ijms24098306
补充文件
