Preparation of high-labeled graphene oxide by tritium thermal activation method for application in the betavoltaic cell of a nuclear battery

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Possibility of tritium introduction into graphene oxide (GO) by tritium thermal activation method was demonstrated. It has been established that, in order to obtain the highest possible specific radioactivity, thin films of GO with a thickness of 5.6 mg/m2 must be treated with tritium atoms. The experiment provided at 77 K showed a number of advantages. Under these conditions, the specific activity of [3H]GO of 2.6 Ci/mg was reached when calculated by the mass of the initial GO (0.7 Ci/mg if purified to remove the labile tritium). Specific energy release in [3H]GO with such specific activity is 22.3 W/kg, which is enough for its application as a component of an atomic battery.

全文:

受限制的访问

作者简介

G. Badun

Moscow State University

编辑信件的主要联系方式.
Email: badunga@my.msu.ru

Faculty of Chemistry

俄罗斯联邦, Moscow

V. Bunyaev

Moscow State University; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: badunga@my.msu.ru

Faculty of Chemistry

俄罗斯联邦, Moscow; Moscow

M. Chernysheva

Moscow State University

Email: badunga@my.msu.ru

Faculty of Chemistry

俄罗斯联邦, Moscow

参考

  1. Krasnov A.A., Legotin S.A. // Instrum. Exp. Tech. 2020. Vol. 63. P. 437–452.
  2. Wagner D.L., Novog D.R., Lapierre R.R. // J. Appl. Phys. 2020. Vol. 127. Article 244303.
  3. Zhou C., Zhang J., Wang X., Yang Y., Xu P., Li P. et al. // ECS J. Solid State Sci. Technol. 2021. Vol. 10. Article 027005.
  4. Ershova N.A., Krasnov A.A., Legotin S.A., Rogozev B.I., Murashev V.N. IOP Conf. Ser. Mater. Sci. Eng. YEAR? Vol. 950. Article 012007.
  5. Sun W., Kherani N.P., Hirschman K.D., Gadeken L.L., Fauchet P.M. // Adv. Mater. 2005. Vol. 17. P. 1230–1233.
  6. Chang Y., Chen C., Liu P., Zhang J. // Sensors Actuators A Phys. 2014. Vol. 215. P. 17–21.
  7. Bormashov V.S., Troschiev S.Y., Tarelkin S.A., Volkov A.P., Teteruk D.V., Golovanov A.V. et al. // Diam. Relat. Mater. 2018. Vol. 84. P. 41–47.
  8. Цветков Л.А., Цветков С.Л., Пустовалов А.А., Вербецкий В.Н., Баранов Н.Н., Мандругин А.А. // Радиохимия. 2022. Т. 64. С. 281–288.
  9. Кузнецов Р.А., Бобровская К.С., Белобров И.С., Тихончев М.Ю., Новиков С.Г., Жуков А.В. // Радиохимия. 2022. Т. 64. С. 289–296.
  10. Sosnin L.J., Suvorov I.A., Tcheltsov A.N., Rogozev B.I., Gudov V.I. // Nucl. Instrum. Meth. Phys. Res. A. 1993. Vol. 334. P. 43–44.
  11. Wu M., Wang S., Ou Y., Wang W. // Appl. Radiat. Isot. 2018. Vol. 142. P. 22–27.
  12. Li H., Liu Y., Hu R., Yang Y., Wang G., Zhong Z., Luo S. // Appl. Radiat. Isot. 2012. Vol. 70. P. 2559–2563.
  13. Lei Y., Yang Y., Liu Y., Li H., Wang G., Hu R. et al. // Appl. Radiat. Isot. 2014. Vol. 90. P. 165–169.
  14. He H., Klinowski J., Forster M., Lerf A. // Chem. Phys. Lett. 1998. Vol. 287. P. 53–56.
  15. Badun G.A., Chernysheva M.G., Grigorieva A.V., Eremina E.A., Egorov A.V. // Radiochim. Acta. 2016. Vol. 104. P. 593–599.
  16. Bunyaev V.A., Chernysheva M.G., Popov A.G., Grigorieva A.V., Badun G.A. // Fullerenes, Nanotub. Carbon Nanostruct. 2020. Vol. 28. P. 191–195.
  17. Amirmazlaghani M., Rajabi A., Pour-mohammadi Z., Sehat, A.A. // Superlattices Microstruct. 2020. Vol. 145. Article 106602.
  18. Вербецкий В.Н., Митрохин С.В., Бадун Г.А., Евлашин С.А., Тепанов А.А., Буняев В.А. // Материаловедение. 2020. Т. 11. С. 8–11.
  19. Khmelnitsky R.A., Evlashin S.A., Martovitsky V.P., Pastchenko P.V., Dagesian S.A., Alekseev A.A. et al. // Cryst. Growth Des. 2016. Vol. 16. P. 1420–1427.
  20. Бадун Г.А., Чернышева М.Г. // Радиохимия. 2023. Т. 65. С. 158–171.
  21. Mouhat F., Coudert F.X., Bocquet M.L. // Nat. Commun. 2020. Vol. 11. Article 1566.
  22. Feicht P., Eigler S. // Chem. Nano Mat. 2018. Vol. 4. P. 244–252.
  23. Буняев В.А. Матер. Междунар. молодежного науч. форума «Ломоносов-2021»: Тез. докл. М., 12–13 апреля 2021 г. М.: МАКС Пресс, 2021. С. 783.
  24. Lian B., De Luca S., You Y., Alwarappan S., Yoshimura M., Sahajwalla V. et al. // Chem. Sci. 2018. Vol. 9. P. 5106–5111.
  25. Тясто З.А., Михалина Е.В., Чернышева М.Г., Бадун Г.А. // Радиохимия. 2007. Т. 49. С. 163–165.
  26. Li X., Lu J., Zheng R., Wang Y., Xu X., Liu Y. // J. Phys. D. Appl. Phys. 2020. Vol. 53. P. 1–6.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Typical structural fragment of OG.

下载 (158KB)
3. Fig. 2. Dependence of the surface specific activity of GO deposited on silicon wafers, layer thickness 0.94 g/m2 (1), and the walls of the reaction vessel, layer thickness 0.0056 g/m2 (2), on the time of treatment with tritium atoms at room temperature.

下载 (61KB)
4. Fig. 3. Dependence of OG activity on the time of treatment with tritium atoms at 77 K (1), 295 K (2), as well as the sum of the activity of [3H]OG and tritiated water in the experiment at 295 K (3).

下载 (76KB)
5. Fig. 4. Dependence of the activity of [3H]OG after removal of the labile label on the time of treatment with tritium atoms at 77 K (1) and 295 K (2).

下载 (67KB)

版权所有 © Russian Academy of Sciences, 2024