Release of 137Cs into the gas phase during the interaction of 137Cs compounds with molten lead

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The release of 137Cs into an Ar flow during the interaction of 137CsI and 137CsOH—137Cs2CO3 with molten lead at a temperature of ~852 K was studied. During the heating of Pb0 with 137CsI, 137CsOH—137Cs2CO3, and 137CsI—137CsOH—137Cs2CO3, from 2 to 8% of 137Cs can pass into the gas flow. Based on the distribution of 137Cs between the elements of the gas purification system, it was concluded that the chemical and disperse composition of compounds containing 137Cs in the gas phase is quite heterogeneous. Volatile 137Cs compounds formed upon heating 137CsI, 137CsOH—137Cs2CO3, and 137CsI—137CsOH—137Cs2CO3 with Pb0 in a gas flow at ~852 K can contain both charged aerosols and aerosols without electric charge.

About the authors

V. V. Kulemin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: kulemin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, korp. 4, Moscow, 119071

I. A. Rumer

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulemin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, korp. 4, Moscow, 119071

Yu. M. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulemin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, korp. 4, Moscow, 119071

E. P. Krasavina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulemin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, korp. 4, Moscow, 119071

S. A. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: kulemin@ipc.rssi.ru
Russian Federation, Leninskii pr., 31, korp. 4, Moscow, 119071

References

  1. Адамов Е.О., Каплиенко А.В., Орлов В.В., Смирнов В.С., Лопаткин А.В., Лемехов В.В., Моисеев А.В. // Атом. энергия. 2020. Т. 129. № 4. С. 185–194.
  2. Лемехов В.В., Петренко А.В., Яшкин А.В. // Сб. докладов отраслевой конф. «Замыкание топливного цикла ядерной энергетики на базе реакторов на быстрых нейтронах». Томск, 11–12 октября 2018 г. С. 159–168.
  3. Селезнёв Е.Ф. Кинетика реакторов на быстрых нейтронах / Под ред. А.А. Саркисова. М.: Наука, 2013. 239 с.
  4. Жуков А.В., Кузина Ю.А., Белозеров В.И. // Изв. вузов. Ядерная энергетика. 2011. Т. 3. С. 100–136.
  5. Rand M.H. // Pure Appl. Chem. 1984. Vol. 56. N 11. P. 1545–1554.https://doi.org/10.1351/pac198456111545
  6. Мориями К., Фуруя Х. // Атом. техника за рубежом. 1998. № 10. C. 20–26.
  7. Kleykamp H. // J. Nucl. Mater. 1985. Vol. 113. № 2–3. P. 221–246. https://doi.org/10.1016/0022-3115(85)90460-X
  8. Бондаренко Г.Г., Булатов Г.С., Гедговд К.Н., Любимов Д.Ю., Якункин М.М. // Металлы. 2011. № 6. С. 59–64.
  9. Arai Y. Nitride fuel // Comprehensive Nuclear Materials / Ed. R.J.M. Konings. Elsevier, 2012. Vol. 3. Part 3.02. P. 41–54. https://doi.org/10.1016/B978-0-08-056033-5.00050-1
  10. Петрашень В.И. Объемный анализ. М.; Л.: ГНТИ хим. литературы, 1946. 292 с.
  11. Hill K.D., Gotoh M. // Metrologia. 1996. Vol. 33. N 4. P. 307–317. https://doi.org/10.1088/0026-1394/33/4/4
  12. Химия и токсикология. Базы данных // Электронный ре-сурс: http://chemister.ru/Database/databases.htm (дата посещения: 19.05.2023)
  13. Dastidar S. Structural, Thermodynamic and Photo-Physical Properties of Cesium Lead Halide Perovskites: PhD Thesis. Drexel Univ., 2018.
  14. Диаграммы состояния двойных металлических систем / Под ред. Н.П. Лякишева. М.: Ме-таллургия, 1997. Т. 2. 1024 с.
  15. Рабинович В.А., Хавин З.Я. Краткий химический справочник / Под общей ред. В. А. Ра-биновича. Л.: Химия, 1977. 376 с.
  16. Волков А.И., Жарский И.М. Большой химический справочник. Минск: Современная шко-ла, 2005. 608 с.
  17. Дубенков Н.Е., Васюхно В.П., Хачересов Г.А. // Ядерная и радиационная безопасность. 2021. № 1 (99). С. 5–13. https://doi.org/10.26277/SECNRS.2021.99.1.001
  18. Ngarayana I.W. Effect of Surface Oxidation in Cesium Chemisorption onto Nuclear Structur-al Materials: PhD Thesis. Nagaoka Univ. of Technology, 2022. 170 p.
  19. JCPDS — Int. Centre for Diffraction Data. PDF 01–089–4257, Cs I.
  20. JCPDS — Int. Centre for Diffraction Data. PDF 03–065–2873, Pb.
  21. JCPDS — Int. Centre for Diffraction Data. PDF 98–061–6996, Pb3.2Bi0.8.
  22. JCPDS — Int. Centre for Diffraction Data. PDF 98–010–5612, Pb0.8Sb0.2.
  23. JCPDS — Int. Centre for Diffraction Data. PDF 98–019–2129, Bi0.9Sb0.1.
  24. JCPDS — Int. Centre for Diffraction Data. PDF 98–064–8505, Pb0.1Sb0.9.
  25. JCPDS — Int. Centre for Diffraction Data. PDF 98–009–4230, Bi2O3.
  26. JCPDS — Int. Centre for Diffraction Data. PDF 98–015–3157, Sb2O5.
  27. JCPDS — Int. Centre for Diffraction Data. PDF 98–041–1685, Cs2CO3 × 3H2O.
  28. JCPDS — Int. Centre for Diffraction Data. PDF 01–071–0562, Pb3O4.
  29. JCPDS — Int. Centre for Diffraction Data. PDF 00–023–0883, Cs2Al22O34.
  30. JCPDS — Int. Centre for Diffraction Data. PDF 00–011–0563, Pb3CO5.
  31. JCPDS — Int. Centre for Diffraction Data. PDF 00–026–0384, Cs2PbO3.
  32. JCPDS — Int. Centre for Diffraction Data. PDF 00–042–0749, Cs2Pb(OH)6.
  33. JCPDS — Int. Centre for Diffraction Data. PDF 00–052–0462, Cs2CO3.
  34. JCPDS — Int. Centre for Diffraction Data. PDF 01–084–2364, CsHCO3.
  35. JCPDS — Int. Centre for Diffraction Data. PDF 01–085–1414, Pb O.
  36. Кирш А.А., Будыка А.К., Кирш В.А. // Рос. хим. журн. (ЖРХО им. Д. И. Менделеева). 2008. Т. 52. № 5. С. 97–102.
  37. Попов С.И., Петрянов И.В. // ДАН СССР. 1975. Т. 225. № 4. С. 868–870.
  38. Филатов Ю.Н. Электроформирование волокнистых материалов (ЭФМ-процесс) / Под ред. В. Н. Кириченко. М.: Москва, 2001. 231 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences