Radio Absorber with High Angular Stability of Resonance Frequency Based on Artificial Magnetic Conductor and Resistive Film

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A structure of a radio absorber (RA) with a high stability of resonance frequency based on a resistive film with a sheet resistance of 120 Ω/sq and an artificial magnetic conductor in a pair of capacitive gratings on a dielectric layer with a high permittivity (epsilon_1 >>1) metallized on the opposite side is proposed. The results of numerical calculations of the frequency–angular dependences of the RA reflection coefficient confirm preliminary estimates obtained from analytical expressions. For example, at epsilon_1 = 20  , the shift of the resonance frequency is no greater than 2% at angles of incidence of phi=0^o...60^o , and the bandwidth-to-thickness ratio is 4.29 at phi=0.

Sobre autores

Yu. Kazantsev

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia;

G. Kraftmakher

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia

V. Maltsev

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia

V. Solosin

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences; Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia; Moscow, 125412 Russia

Bibliografia

  1. Sievenpiper D., Zhang L., Broas R.F.J. et al. // IEEE Trans. 1999. V. MTT-47. № 11. P. 2059.
  2. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2001. V. MTT-49. № 7. P. 1262.
  3. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2005. V. AP-53. № 4. P. 1377.
  4. Clavijo S., Diaz R.E., McKinzie W.E. // IEEE Trans. 2003. V. AP-51. № 10. P. 2678.
  5. Feresidis A.P., Goussetis G., Shenhong Wang, Vardaxoglou J.C. // IEEE Trans. 2003. V. AP-51. № 1. P. 209.
  6. Ying Zhang, von Hagen J., Younis M. et al. // IEEE Trans. 2003. V. AP-51. № 10. P. 2704.
  7. Fan Yang, Rahmat-Samii Y. // IEEE Trans. 2003. V. AP-51. № 10. P. 2691.
  8. Казанцев Ю.Н., Аплеталин В.Н. // РЭ. 2007. Т. 52. № 4. С. 415.
  9. Engheta N. // IEEE Antennas and Propagation Society Intern. Symp. June 2002. V. 2. P. 392.
  10. Simms S., Fusco V. // Electron. Lett. 2005. V. 41. № 24. P. 1311.
  11. Казанцев Ю.Н., Крафтмахер Г.А., Мальцев В.П., Солосин В.С. // РЭ. 2022. Т. 67. № 4. С. 339.
  12. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (120KB)
3.

Baixar (43KB)
4.

Baixar (117KB)
5.

Baixar (116KB)
6.

Baixar (118KB)

Declaração de direitos autorais © Ю.Н. Казанцев, Г.А. Крафтмахер, В.П. Мальцев, В.С. Солосин, 2023