Investigation of optical fiber line with a positive transmission ratio of analog microwave signal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of optical radiation power on the one-decibel compression point, harmonic distortion and dynamic range due to interference in a fiber-optic transmission line of an ultra-high frequency (microwave) signal has been studied. The line had a positive microwave signal transmission coefficient, and there were no amplification elements between the input and output. The amplification effect was achieved through the use of increased power of the carrier optical radiation and a photodetector with a high photocurrent. It has been shown that an increase in optical radiation power leads to a decrease in one-dB compression power and an increase in harmonic distortion, but an increase in optical radiation power does not lead to a change in the dynamic range of interference. It was found that the dynamic range free from interference was about 85…87 dB.

Full Text

Restricted Access

About the authors

I. Yu. Tatsenko

Saint Petersburg Electrotechnical University “LETI”

Author for correspondence.
Email: abitur.tatsenko@mail.ru
Russian Federation, Prof. Popov Str., 5, Saint-Petersburg, 197022

A. B. Ustinov

Saint Petersburg Electrotechnical University “LETI”

Email: abitur.tatsenko@mail.ru
Russian Federation, Prof. Popov Str., 5, Saint-Petersburg, 197022

References

  1. Петров А.Н., Тронев А.В., Лебедев В.В. и др. // ЖТФ. 2015. Т. 85. № 5. С. 131.
  2. Muniz A.L.M., Noque D.F., Borges R.M. et al. // Microwave Opt. Technol. Lett. 2017. V.59. № 9. P. 2185. https://doi.org/10.1002/mop.30704
  3. Noque D.F., Borges R.M., Muniz A.L.M. et al. // Opt. Commun. 2018. V. 414. P. 191.https://doi.org/10.1016/j.optcom.2018.01.015
  4. Таценко И.Ю., Легкова Т.К., Иванов А.В., Устинов А.Б. // Изв. вузов России. Радиоэлектроника. 2020. Т. 23. № 4. С. 48.https://doi.org/10.32603/1993-8985-2020-23-4-48-56
  5. Sánchez E., Pérez-López D., dasMahapatra P., Capmany J. // Optics Express. 2021. V. 29. № 10. P. 14757.https://doi.org/10.1364/OE.423613
  6. Li P., Dai Z., Yan L., Yao J. // Opt. Express. 2022. V. 30. № 5. P. 6690.https://doi.org/10.1364/OE.449274
  7. Ackerman E.I., Betts G.E., Burns W.K. et al. // Proc. IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA 03–08 June. 2007. N.Y.: IEEE, 2007. P. 51.
  8. Roussell H.V., Regan M.D., Prince J.L. et al. // Proc. Intern. Topical Meeting on Microwave Photonics. Victoria, BC, Canada, 03–05 Oct. 2007. N.Y.: IEEE, 2007. P. 84.https://doi.org/10.1109/MWP.2007.4378142
  9. Williams K.J., Esman R.D. // Electron. Lett. 1992. V. 8. № 28. P. 731.https://doi.org/10.1049/el:19920463
  10. Урик В.Дж., МакКинни Дж.Д., Вилльямс К.Дж. Основы микроволновой фотоники. М.: Техносфера, 2016.
  11. Hayes R.R., Persechini D.L. // IEEE Photonics Technol. Lett. 1993. V. 5. № 1. P. 70.https://doi.org/10.1109/68.185064

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Block diagram of the experimental CFM layout: 1 - laser, 2 — electro—optical modulator, 3 — optical fiber, 4 — photodetector.

Download (27KB)
3. Fig. 2. Amplitude-frequency characteristics of ORP at different laser power, Times = 14.8 (1), 20.4 (2), 22.7 (3), 23.6 (4), 25.4 dBm (5); vertical lines indicate frequencies of 1, 6 and 10 GHz.

Download (108KB)
4. Fig. 3. Transmission characteristics of CFM power at f = 1, 6 and 10 GHz: (a) Rf = 20.4 dBm, R1dB = 13.2 (1), 11.1 (2), 10 dBm (3), (b) Rla = 25.4 dBm, R1dB = 11.2 (1), 10.5 (2), 9.6 dBm (3).

Download (124KB)
5. Fig. 4. Block diagram of an experimental layout for measuring harmonic distortion in CFM: 1 - laser, 2 — electro—optical modulator, 3 — optical fiber, 4 — photodetector, 5 — microwave signal generator, 6 — spectrum analyzer.

Download (33KB)
6. Fig. 5. Typical spectrum of the output signal with harmonic distortion (a); measurement results of harmonic distortion in AFLP at Rf = 20.4 (b) and 25.4 dBm (c); dependence of the harmonic distortion coefficient on the power of the input microwave signal (d): Rf = 20.4 (1) and 25.4 dBm (2).

Download (217KB)
7. Fig. 6. Block diagram of an experimental layout for measuring intermodulation distortions: 1 - laser, 2 — electro—optical modulator, 3 — optical fiber, 4 — photodetector, 5 — microwave signal generator, 6 - spectrum analyzer, 7 — adder.

Download (57KB)
8. Fig. 7. Dependences of the output power of the main and intermodulation harmonics on the input power of the microwave signal at f2 — f1 = 500 MHz: (a) Rf = 20.4, noise level -124 dBm, SFDR = 85 dB; (b) Rf = 25.4 dBm, noise level -114 dBm, SFDR = 86.5 dB; dots are an experiment, a solid line is a linear extrapolation of experimental data to determine OIP3.

Download (110KB)

Copyright (c) 2024 Russian Academy of Sciences