Development of the W-band traveling-wave tube with sheet electron beam and staggered double-grating slow wave structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, results of development of a W-band O-type traveling-wave tube with sheet electron beam are presented. The staggered double-grating slow-wave stricture with wideband input/output coupling structures was designed and optimized and its high-frequency electromagnetic parameters were calculated. The results of 3D particle-in-cell simulation of beam-wave interaction in the TWT are presented. Gain over 30 dB in the 25-GHz frequency band was obtained. A sample of an electron gun with an impregnated cathode, focusing electrode, and anode, providing the formation of a sheet electron beam with a high-aspect ratio and a current of 0.1 A, was designed and fabricated. The design of the vacuum window is presented, and the technology of its fabrication is discussed.

Texto integral

Acesso é fechado

Sobre autores

V. Titov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

I. Chistyakov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

I. Navrotsky

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

D. Zolotykh

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

R. Torgashov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Autor responsável pela correspondência
Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

О. Abramov

Saratov State University

Email: torgashovra@gmail.com
Rússia, 83 Astrakhanskaya St., Saratov, 410012

E. Gorshkova

“RPE “Almaz”

Email: torgashovra@gmail.com
Rússia, 1 Panfilova St., Saratov, 410033

V. Emelyanov

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; “RPE “Almaz”

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 1 Panfilova St., Saratov, 410033

N. Ryskin

V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: torgashovra@gmail.com

Saratov Branch V.A. Kotelnikov Institute of Radio Engineering and Electronics RAS

Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

Bibliografia

  1. Григорьев А.Д. Терагерцевая электроника. М.: Физматлит, 2021.
  2. Zhang X.-C., Xu J. Introduction to THz Wave Photonics. N.Y.: Springer, 2010. https://doi.org/10.1007/978-1-4419-0978-7
  3. Rieh J.-S. Introduction to Terahertz Electronics. N.Y.: Springer, 2021. https://doi.org/10.1007/978-3-030-51842-4
  4. THz Communications. Paving the Way Towards Wireless Tbps / Eds T.Kürner, D.M. Mittleman, T. Nagatsuma. Springer Series in Optical Sciences. V. 234. N.Y.: Springer, 2022. https://doi.org/10.1007/978-3-030-73738-2
  5. Paoloni C., Gamzina D., Letizia R. et al. // J. Electromag. Waves Appl. 2021. V. 35. № 5. P. 567. https://doi.org/10.1080/09205071.2020.1848643
  6. Shin Y.M., Baig A., Barnett L.R. et al. // IEEE Trans. 2011. V. ED-58. № 9. P. 3213. https://doi.org/10.1109/TED.2011.2159842
  7. Baig A., Gamzina D., Kimura T. et al. // IEEE Trans. 2017. V. ED-64. № 5. P. 2390. https://doi.org/10.1109/TED.2017.2682159
  8. Karetnikova T.A., Rozhnev A.G., Ryskin N.M. et al. // IEEE Trans. 2018. V. ED-65. № 6. P. 2129. https://doi.org/10.1109/TED.2017.2787960
  9. Shin Y.-M., Stockwell B., Begum R., et al. // IEEE Trans. 2023. V. ED-70. № 6. P. 2738. https://doi.org/10.1109/TED.2023.3241834
  10. Zhang C., Pan P., Cai J. et al. // IEEE Trans. 2023. V. ED-70. № 6. P. 2798. https://doi.org/10.1109/TED.2022.3233291
  11. Yang R., Xu J., Yue L. et al. // IEEE Trans. 2022. V. ED-69. № 5. P. 2656. https://doi.org/10.1109/TED.2022.3161255
  12. Рожнев А.Г., Рыскин Н.М., Каретникова Т.А. и др. // Изв. вузов. Радиофизика. 2013. Т. 56. № 8—9. С. 601.
  13. Каретникова Т.А., Рожнев А.Г., Рыскин Н.М. и др. // РЭ. 2016. Т. 61. № 1. С. 54. https://doi.org/10.1134/S1064226915120116
  14. Давидович М.В. // ЖТФ. 2019. Т. 89. № 2. С. 280. https://doi.org/10.21883/JTF.2019.02.47084.80-18
  15. Shin Y.-M., Barnett L.R., Luhmann N.C. // IEEE Trans. 2009. V. ED-56. № 5. P. 706. https://doi.org/10.1109/TED.2009.2015404
  16. Wang J., Shu G., Liu G. et al. // IEEE Trans. 2016. V. ED-63. № 1. P. 504. https://doi.org/10.1109/TED.2015.2502620
  17. Srivastava V., Srivastava N. // 3rd Intern. Conf. and Workshops on Recent Advances and Innovations in Engineering (ICRAIE). Jaipur, India. 22–25 Nov. N.Y.: IEEE, 2018. P. 1. https://doi.org/10.1109/ICRAIE.2018.8710392
  18. Srivastava V. // IETE Tech. Rev. 2018. V. 36. № 5. P. 501. https://doi.org/10.1080/02564602.2018.1509738
  19. Zheng Y., Gamzina D., Himes L. et al. // IEEE 2020. V. THz-10. № 4. P. 411. https://doi.org/10.1109/TTHZ.2020.2995826
  20. Nguyen K.T., Pasour J.A., Antonsen T.M. et al. // IEEE Trans. 2009. V. ED56. № 5. P. 744. https://doi.org/10.1109/TED.2009.2015420
  21. Ruan C., Wang S., Han Y., et al. // IEEE Trans. 2014. V. ED-61. № 6. P. 1643. https://doi.org/10.1109/TED.2014.2299286
  22. Navrotsky I.A., Burtsev A.A., Emelyanov V.V. et al. // IEEE Trans. 2021. V. ED-68. № 2. P. 798. https://doi.org/10.1109/TED.2020.3041425
  23. Zheng Y., Gamzina D., Popovic B., Luhmann N.C. // IEEE Trans. 2016. V. ED-63. № 11. P. 4466. https://doi.org/10.1109/TED.2016.2606322
  24. Yang L., Wang J., Li H., et al. // IEEE Trans. 2017. V. TPS-45. № 5. P. 805. https://doi.org/10.1109/TPS.2017.2688480
  25. Zhang C., Pan P., Chen X. et al. // Electronics. 2021. V. 10. Р. 3051. https://doi.org/10.3390/electronics10243051
  26. Yin P.C., Xu J., Yang R.C. et al. // IEEE Electron Device Lett. 2022. V. 43. № 8. P. 1343. https://doi.org/10.1109/LED.2022.3187160
  27. Cook A.M., Joye C.D., Kimura T. et al. // IEEE Trans. 2013. V. ED-60. № 3. P. 1257. https://doi.org/10.1109/TED.2012.2232929
  28. Сазонов В.П., Терехина З.Н., Лямзин В.М. // Обзоры по электронной технике. Сер. Электроника СВЧ. 1972. Вып. 3(8). С. 1.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of a dual comb type ZS.

Baixar (110KB)
3. Fig. 2. Results of modeling the electrodynamic characteristics of the ZS: a — dispersion characteristics of the symmetric (1), antisymmetric (2) mode and the electron beam at a voltage of 12.7 kV (3); b — dependence of the coupling resistance K on the frequency for the working +1st spatial harmonic.

Baixar (96KB)
4. Fig. 3. Design of a broadband energy input/output matching device (a) and S-parameters of the ES (b).

Baixar (132KB)
5. Fig. 4. Dependence of the linear gain coefficient G on frequency (a) and dependence of the output power P on frequency for different values ​​of input power (b): 10 (1), 20 (2), 50 (3), 100 mW (4).

Baixar (123KB)
6. Fig. 5. Three-dimensional computer model of the electron gun (a) and a photograph of the experimental model (b): 1 - cathode; 2 - focusing electrode; 3 - anode; 4 - electron flow. The colors show the electron energy, changing from 0 to 12.7 keV.

Baixar (135KB)
7. Fig. 6. Experimentally measured VAC of the gun.

Baixar (45KB)
8. Fig. 7. Computer model of a vacuum window in the form of an inclined mica plate in a waveguide.

Baixar (54KB)
9. Fig. 8. Dependences of the VSWR of the vacuum window on the frequency with a mica plate thickness of 85 µm and an inclination angle of 60° (1), 65° (2), 70° (3) and 75° (4).

Baixar (89KB)
10. Fig. 9. Photograph of a vacuum-tight “mica plate–metal” connection: 1 — mica disk, 2 — titanium ring, 3 — blank made of MD-15 pseudo-alloy.

Baixar (225KB)
11. Fig. 10. Dependences of the VSWR on the frequency for a mica disk 85 µm thick, normally located in the waveguide: 1 — experimental measurements; 2 — results of calculation using formula (3).

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024