Secondary metabolites and biological activity of Agastache rugosa (Lamiaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As a result of summarizing the literature data on Agastache rugosa (Fisch. et C. A. Mey.) Kuntze (Lamiaceae), it was shown that the species is characterized by phenylpropanoid and terpenoid metabolites. In the aboveground parts of A. rugosa the following phenolic compounds were found: simple phenols, phenolcarboxylic acids, lignans, flavonoids and coumarins. In A. rugosa essential oil, the terpenoid compounds are represented by mono- and sesquiterpenoids, as well as di- and triterpenoids. Various aspects of the biological activity of the species and its components are considered. Extracts of A. rugosa, as well as their individual components, have varied bioactivity like antioxidant, anticancer, anti-inflammatory, antiviral, antibacterial, antimicrobial, and antifungal.

Full Text

Restricted Access

About the authors

L. M. Belenovskaya

Komarov Botanical Institute RAS

Email: ANaumenko@binran.ru
Russian Federation, Saint-Petersburg

A. A. Naumenko

Komarov Botanical Institute RAS

Author for correspondence.
Email: ANaumenko@binran.ru
Russian Federation, Saint-Petersburg

References

  1. Hong M., Deepa P., Lee K.-Y., Kim K., Sowndhararajan K., Kim S. 2022. Chemical diversity of essential oils from Korean native populations of Agastache rugosa (Korean mint). — Molecules. 27(19): 6341. https://doi.org/10.3390/molecules27196341
  2. Probatova N. S., Krestovskaya T. V. 1995. Lamiaceae. — In: [Vascular plants of the Soviet Far East]. Vol. 7. St. Petersburg. P. 294—379. (In Russian)
  3. Suh Y. 2007. Gen. Agastache. — In: The genera of vascular plants of Korea. Seoul. P. 823.
  4. Yeo H. J., Park C. H., Park Y. E., Hyeon H., Kim J. K., Lee S. Y., Park S. U. 2021. Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. — Physiol. Mol. Biol. Plants. 27(3): 445—455. https://doi.org/10.1007/s12298-021-00945-z
  5. Anand S., Pang E., Livanos G., Mantri N. 2018. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and poly-phenol content. — Molecules. 23(1): 108. https://doi.org/10.3390/molecules23010108
  6. Fujita S., Fujita Y. 1972. Miscellaneous contributions to the essential oils of the plants from various territories. XXIX. Essential oil of Agastache rugosa O. Kuntze (5). Sesquiterpene hydrocarbons in the oil. — Yakugaku Zasshi 92(7): 908—909. https://doi.org/10.1248/yakushi1947.92.7_908
  7. Fujita S., Fujita Y. 1973. Miscellaneous contributions of the essential oils of the plants from various territories. XXXIII. Essential oil of Agastache rugosa O. Kuntze (6). — Yakugaku Zasshi. 93(12): 1679—1681. https://doi.org/10.1248/yakushi1947.93.12_1679
  8. Ahn B., Yang Ch.B. 1991. Volatile flavor components of Bangah (Agastache rugosa O. Kuntze) herb. — Korean J. Food Sci. Technology. 23(5): 582—586. https://www.kjfst.or.kr/journal/view.html?uid=3670&page=582&s_v=23&s_n=5
  9. Charles D. J., Simon J. E., Widrlechner M. P. 1991. Characterization of the essential oil constituents of Agastache species. — J. Agric. Food Chem. 39(11): 1946—1949. https://doi.org/10.1021/jf00011a011
  10. Weyerstahl P., Marschall H., Manteuffel E., Huneck S. 1992. Volatile constituents of Agastache rugosa. — J. Essent. Oil Res. 4(6): 585—587. https://doi.org/10.1080/10412905.1992.9698139
  11. Düng N. X., Cu L. D., Thái N. H., Mõi L. D., Hac L. V., Leclercq P. A. 1996. Constituents of the leaf and flower oils of Agastache rugosa (Fisch. et Mey.) O. Kuntze from Vietnam. — J. Essent. Oil Res. 8(2): 135—138. https://doi.org/10.1080/10412905.1996.9700580
  12. Yang D., Wang F., Su J., Zeng L. 2000. [Chemical composition of essential oil in stems, leaves and flowers of Agastache rugosa]. — J. Chin. Med. Mat. 23(3): 149—151. https://pubmed.ncbi.nlm.nih.gov/12575134/ (In Chinese)
  13. Wang J. C. 2010. [GC—MS-Analysis of chemical composition of volatile oil from Agastache rugosa]. — Food Sci. 31(8): 223—225. https://www.spkx.net.cn/EN/Y2010/V31/I8/223
  14. Gong H., Zhou X., Zhu M., Ma X., Zhang X., Tian Sh. 2012. Constituents of essential oil isolated from the dried flower and leaf of Agastache rugosa (Fisch. et C. A. Mey) O. Kuntze from Xinjiang, in China. — J. Essent. Oil Bearing Plants. 15(4): 534—538. https://doi.org/10.1080/0972060X.2012.10644084
  15. Lim S. S., Jang J. M., Park W. T., Uddin M. R., Chae S. C., Kim H. H., Park S. U. 2013. Chemical composition of essential oils from flower and leaf of Korean mint, Agastache rugosa. — Asian J. Chem. 25(8): 4361—4363. http://doi.org/10.14233/ajchem.2013.13977
  16. Li H. Q., Liu Q. Z., Liu Z. L., Du Sh. Sh., Deng Z. W. 2013. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. — Molecules. 18(4): 4170—4180. https://doi.org/10.3390/molecules18044170
  17. Lee T. H., Park S., Yoo G., Jang Ch., Kim M. H., Kim S. H., Kim S. Y. 2016. Demethyleugenol β-glucopyranoside isolated from Agastache rugosa decreases melanin synthesis via down-regulation of MITF and SOX9. — J. Agric. Food Chem. 64(41): 7733—7742. http://doi.org/10.1021/acs.jafc.6b03256
  18. Seo Y. H., Kang S. Y., Shin J. S., Ryu S. M., Lee A Y., Choi G. S., Moon B. C., Jang D. S., Shim S. H., Lee D., Lee K. T., Lee J. 2019. Chemical constituents from the aerial parts of Agastache rugosa and their inhibitory activities on prostaglandin E2 production in lipopolysaccharid-treated Raw 264.7 macrophages. — J. Nat. Prod. 82(12): 3379—3385. https://doi.org/10.1021/acs.jnatprod.9b00697
  19. Kim J. B., Kim J. B., Cho K. J., Hwang Y. S., Park R. D. 1999. Isolation, identification and activity of rosmarinic acid, a potent antioxidant extracted from Korean Agastache rugosa. — J. Kor. Soc. Agric. Chem. Biotechnol. 42(3): 262—266. https://koreascience.kr/article/JAKO199903043022025.pdf
  20. Tuan P. A., Park W. T., Xu H., Park N. I., Park S. H. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. — J. Agr. Food Chem. 60(23): 5945—5951. https://doi.org/10.1021/jf300833m
  21. Zielińska S., Kolniak-Ostek J., Dziadas M., Oszmiański J., Matkowski A. 2016. Characterization of polyphenols in Agastache rugosa leaves and inflorescences by UPLC-qTOF-MS following FCPC-separation. — J. Liq. Chromatorg. Relat. Technol. 39(4): 209—219. https://doi.org/10.1080/10826076.2016.1147461
  22. Cao P., Xie P., Wang X., Wang J., Wei J., Kang W. Y. 2017. Chemical constituents and coagulation activity of Agastache rugosa. — BMC Complement. Altern. Med. 17: 93. https://doi.org/10.1186/s12906-017-1592-8
  23. Lee J. J., Lee J. H., Gu M. J., Han J. H., Cho W. K., Ma Y. 2017. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevent atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIR1 and p27KIP. — J. Funct. Foods. 30: 30—38. https://doi.org/10.1016/j.jff.2016.12.025
  24. Yuk H. J., Won Ryu H. W., Kim D. S. 2023. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Foods. 12(3): 573. https://doi.org/10.3390/foods12030573
  25. Zakharov A. M., Dolya V. S., Zakharova O. I., Bespalova A. S., Litvinova N. V. 1988. Essential and fatty oils of Agastache rugosa. — Chem. Nat. Compd. 24(3): 384—385. https://doi.org/10.1007/bf00598595
  26. Lee C. H., Kim N. H., Kho Y. E. 2002. Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. — J. Nat. Prod. 65(3): 414—416. https://doi.org/10.1021/np010425e
  27. Zakharova O. I., Zakharov A. M., Glyzin V. I. 1979. Flavonoids of Agastache rugosa. — Chem. Nat. Compd. 15(5): 561—564.
  28. Itokawa H., Suto K., Takeya K. 1981. Structures of agastachoside and agastachin, new glucosylflavones isolated from Agastache rugosa. — Chem. Pharm. Bull. 29(6): 1777—1779. https://doi.org/10.1248/cpb.29.1777
  29. Vogelman J. E. 1984. Flavonoids of Agastache section Agastache. — Biochem. Syst. Ecol. 12(4): 363—366. https://doi.org/10.1016/0305—1978(84)90067-X
  30. Park S., Kim N., Yoo G., Kim Y., Lee T. H., Kim S. Y., Kim S. H. 2016. A new flavone glycoside from the leaves of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Biochem. Syst. Ecol. 67: 17—21. https://doi.org/10.1016/j.bse.2016.05.019
  31. Cao P., Xie P., Wang X., Wang J., Wei J., Kang W. Y. 2017. Chemical constituents and coagulation activity of Agastache rugosa. — BMC Complement. Altern. Med. 17: 93. https://doi.org/10.1186/s12906-017-1592-8
  32. An J. H., Yuk H. J., Kim D. Y., Nho Ch.W., Lee D., Ryu H. W., Oh S. R. 2018. Evaluation of phytochemicals in Agastache rugosa (Fisch. et C. A. Mey.) Kuntze at different growth stages by UPLC-QTof-MS. — Ind. Crops Prod. 112: 608—616. https://doi.org/10.1016/j.indcrop.2017.12.050
  33. Hou H. D., Wu Ch. Y., Zhou J., Long F., Shen H., Xu J. D., Zhou Sh. Sh., Mao Q. M., Wei Y. J., Li S. L. 2023. Accumulation patterns of major bioactive components in two chemotypes of Agastache rugosa during flower development evaluated by GC-QQQ-MS/MS and UPLC-QTOF-MS/MS analysis. — Ind. Crops Prod. 191(Part A): 115942. https://doi.org/10.1016/j.indcrop.2022.115942
  34. Dang J., Lin G., Liu L., Zhou P., Shao Y., Dai Sh., Sang M., Jiang Zh., Liu C., Wu Q. 2022. Comparison of pulegone and estragol chemotypes provides new insight into volatile oil biosynthesis of Agastache rugosa. — Front. Plant Sci. 13: 850130. https://doi.org/10.3389/fpls.2022.850130
  35. Choi J. S., Song B. M., Park H. J. 2016. Gas chromatographic analysis and cholinesterase activity of the essential oil from Korean Agastache rugosa. — Korean J. Pharmacogn. 47(2): 192—196. https://www.dbpia.co.kr/journal/articleDetail/NODE11128802 (In Korean)
  36. Zou Z. M., Cong P. Z. 1991. [Studies on the chemical constituents from the roots of Agastache rugose]. — Acta Pharmacol. Sinica (Yao Xue Xue Bao). 26(12): 906—910. https://pubmed.ncbi.nlm.nih.gov/1823989/ (In Chinense)
  37. Lee H. K., Byon S. J., Oh S. R., Kim J. I., Kim Y. H., Lee Ch.O. 1994. Diterpenoids from the roots of Agastache rugosa and their cytotoxic activity. — Korean J. Pharmacogn. 25(4): 319—327. https://www.dbpia.co.kr/journal/articleDetail/NODE11127421
  38. Lee H. K., Oh S. R., Kim J. I., Kim J. W., Lee Ch.O. 1995. Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugosa. — J. Nat. Prod. 58(11): 1718—1721. https://doi.org/10.1021/np50125a011
  39. Min B. S., Hattori M., Lee H. K., Kim Y. H. 1999. Inhibitory constituents against HIV-1 protease from Agastache rugosa. — Arch. Pharm. Res. 22(1): 75—77. https://doi.org/10.1007/BF02976440
  40. Fujita Y., Ueda T. 1957. [Miscellaneous Contributions to the Essentia Oils of the Plants from Various Territories. VI. Essential Oil of Agastache ragosa O. Kuntze. Part 3]. — Nippon Kagaku Zasshi. 78(10): 1541—1542. https://doi.org/10.1246/nikkashi1948.78.1541 (In Japanese)
  41. Ahn B., Yang Ch. 1991. Chemical composition of Bangah (Agastache rugosa O. Kuntze) herb. — Korean J. Food Sci. and Technology. 23(3): 375—378. 0367-6293(pISSN).
  42. Yang D., Wang F., Su J., Zeng L. 2000. [Chemical composition of essential oil stems, leaves and flowers of Agastache rugosa]. — J. Chin. Med. Mat. 23(3): 149—151. PMID: 12575134.
  43. Yamani H., Mantri N., Morrison P. D., Pang E. 2014. Analysis of volatile organic compounds from leaves, flowers spikes, and nectar of Australian grown Agastache rugosa. — BMC Complement. Altern. Med. 14: 495. https://doi.org/10.1186/1472-6882-14-495
  44. Kim J., Jang J., Kwon O. 2023. P23-043-23 Effects and Safety of Agastache rugosa with supervised resistance exercise in middle-aged healthy adults. — Current developments in nutrition. 7(Suppl.1): 20—21. https://doi.org/10.1016/j.cdnut.2023.100154
  45. Hong S., Cha K. H., Kwon D. Y., Son Y. J., Kim S. M., Choi J.-H., Yoo G., Nho C. W. 2021. Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. — Phytomedicine. 84: 153517. https://doi.org/10.1016/j.phymed.2021.153517
  46. Jang S.-A., Hwang Y.-H., Kim T., Yang H., Lee J., Seo Y. H., Park J.-I., Ha H. 2020. Water extract of Agastache rugosa prevents ovariectomy-induced bone loss by inhibiting osteoclastogenesis. — Foods. 9(9): 1181. https://doi.org/10.3390/foods9091181
  47. Nam H.-H., Kim J. S., Lee J., Seo Y. H., Kim H. S., Ryu S. M., Choi G., Moon B. Ch., Lee A. Y. 2020. Pharmacological effects of Agastache rugosa against gastritis using a network pharmacology approach. — Biomolecules. 10(9): 1298. https://doi.org/10.3390/biom10091298
  48. Nan L., Nam H.-H., Choo B.-K. 2022. Agastache rugosa inhibits LPS-induced by RAW264.7 cellular inflammation and ameliorates oesophageal tissue damage from acute reflux esophagitis in rats. — Food Biosci. 50(B): 102187. https://doi.org/10.1016/j.fbio.2022.102187
  49. Gong H., Li S., He L., Kasimu R. 2017. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. — BMC Complement Altern. Med. 17: 95. https://doi.org/10.1186/s12906-017-1605-7
  50. Moon H., Kim M. J., Son H. J., Kweon H.-J., Kim J. T., Kim Y., Shim J., Suh B.-C., Rhyu M-R. 2015. Five hTRPA1 agonists found in indigenous Korean mint, Agastache rugosa. — PLoS One. 10(5): e0127060. https://doi.org/10.1371/journal.pone.0127060
  51. Oh Y., Lim H.-W., Huang Y.-H., Kwon H.-S., Jin С. D., Kim K., Lim C.-J. 2016. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. — J. Photochem. Photobiol. B. 163: 170—176. https://doi.org/10.1016/j.jphotobiol.2016.08.026
  52. Shin D., Lee Y., Huang Y.-H., Lim H.-W., Jang K., Kim D.-D., Lim C.-J. 2018. Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes. — BMC Complement Altern. Med. 18(1): 196. https://doi.org/10.1186/s12906-018-2194-9
  53. Yun M.-S., Kim Ch., Hwang J.-K. 2019. Agastache rugosa Kuntze attenuates UVB-induced photoaging in hairless mice through the regulation of MAPK/AP-1 and TGF-β/ Smad pathways. — J. Microbiol. Biotechnol. 29(9): 1349—1360. https://doi.org/10.4014/jmb.1908.08020
  54. Seo H., Kim Ch., Kim M.-B., Hwang J.-K. 2019. Anti-photoaging effect of Korean mint (Agastache rugosa Kuntze) extract on UVB-irradiated human dermal fibroblasts. — Prev. Nutr. Food Sci. 24(4): 442—448. https://doi.org/10.3746/pnf.2019.24.4.442
  55. Lee Y., Lim H. W., Ryu I. W., Huang Y. H., Park M., Chi Y. M., Lim C. J. 2020. Anti-inflammatory, barrier-protective, and antiwrinkle properties of Agastache rugosa Kuntze in human epidermal keratinocytes. — Biomed. Res. Int. 2020: 1759067. https://doi.org/10.1155/2020/1759067
  56. Park C. H., Yeo H. J., Baskar T. B., Park Y. E., Park J. S., Lee S. Y., Park S. U. 2019. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. — Antioxidants. 8(3): 75. https://doi.org/10.3390/antiox8030075
  57. Haiyan G., Lijuan H., Shaoyu L., Chen Z., Ashraf M. A. 2016. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. — Saudi J. Biol. Sci. 23(4): 524—530. https://doi.org/10.1016/j.sjbs.2016.02.020
  58. Yeo H. J., Kwon M. J., Han S. Y., Jeong J. C., Kim C. Y., Park S. U., Park C. H. 2023. Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. — Plants (Basel). 12(4): 797. https://doi.org/10.3390/plants12040797
  59. Pan Y.-N., Zhao Y., Zhao R.-J., Yang X.-R., Li T.-C., Hu T.-T., Yang Y., Zhao J.-H. 2018. [Effects of five Chinese herbs on human demodicid mites in vitro]. — Chin. J. Schisto. Control. 31(3): 301—304. https://www.zgxfzz.com/EN/Y2019/V31/I3/301
  60. Sun J., Sun P., Kang C., Zhang L., Guo L., Kou Y. 2022. Chemical composition and biological activities of essential oils from six Lamiaceae folk medicinal plants. — Front. Plant Sci. 13: 919294. https://doi.org/10.3389/fpls.2022.919294
  61. Hong M., Jang H., Bo S., Kim M., Deepa P., Park J., Sowndhararajan K., Kim S. 2022. Changes in human electroencephalographic activity in response to Agastache rugosa essential oil exposure. — Behav. Sci. 12(7): 238. https://doi.org/10.3390/bs12070238
  62. Desta K. T., Kim G.-S., Kim Y.-H., Lee W. S., Lee S. J., Jin J. S., El-Aty A. M. A., Shin H.-C., Shim J.-H., Shin S. C. 2016. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. — Biomed. Chromatogr. 30(2): 225—231. https://doi.org/10.1002/bmc.3539
  63. Lee H. W., Ryu H. W., Baek S. C., Kang M.-G., Park D., Han H.-Y., An J. H., Oh S.-R., Kim H. 2017. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. — Int. J. Biol. Macromol. 104(Pt A): 547—553. https://doi.org/10.1016/j.ijbiomac.2017.06.076
  64. Yuk H. J., Ryu H. W., Kim D.-S. 2023. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Foods. 12(3): 573. https://doi.org/10.3390/foods12030573
  65. Kim N. Y., Kwon H. S., Lee H. Y. 2017. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. — J. Cosmet. Dermatol. 16(3): 407—415. https://doi.org/10.1111/jocd.12264
  66. Kwon E.-B., Kang M.-J., Ryu H. W., Lee S., Lee J.-W., Lee M. K., Lee H.-S., Lee S. U., Oh S.-R., Kim M.-O. 2020. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. — Phytomedicine. 68: 153178. https://doi.org/10.1016/j.phymed.2020.153178
  67. Wang X., Perumalsamy H., Kwon H. W., Na Y.-E., Ahn Y.-J. 2015. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer’s disease. — Sci. Rep. 5: 16127. https://doi.org/10.1038/srep16127
  68. Cho H.-I., Park J.-H., Choi H.-S., Kwak J. H., Lee D.-U., Lee S. K., Lee S.-M. 2014. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. — J. Nat. Prod. 77(11): 2497—2503. https://doi.org/10.1021/np500537x
  69. Cho H.-I., Hong J.-M., Choi J.-W., Choi H.-S., Kwak J. H., Lee D.-U., Lee S. K., Lee S.-M. 2015. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. — Eur. J. Pharmacol. 764: 613—621. https://doi.org/10.1016/j.ejphar.2015.08.001
  70. Park S.-J., Lee K., Kang M.-A., Kim T.-H., Jang H.-J., Ryu H. W., Oh S.-R., Lee H.-J. 2021. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells. — Phytomedicine. 80: 153392. https://doi.org/10.1016/j.phymed.2020.153392
  71. Sarheed M. M., Rajabi F., Kunert M., Boland W., Wetters S., Miadowitz K., Kaźmierczak A., Sahi V. P., Nick P. 2020. Cellular base of mint allelopathy: menthone affects plant microtubules. — Front. Plant Sci. 11: 546345. https://doi.org/10.3389/fpls.2020.546345

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences