Secondary metabolites and biological activity of Agastache rugosa (Lamiaceae)
- Authors: Belenovskaya L.M.1, Naumenko A.A.1
-
Affiliations:
- Komarov Botanical Institute RAS
- Issue: Vol 60, No 2 (2024)
- Pages: 42-58
- Section: Articles
- URL: https://permmedjournal.ru/0033-9946/article/view/674409
- DOI: https://doi.org/10.31857/S0033994624020035
- EDN: https://elibrary.ru/PYNBUD
- ID: 674409
Cite item
Abstract
As a result of summarizing the literature data on Agastache rugosa (Fisch. et C. A. Mey.) Kuntze (Lamiaceae), it was shown that the species is characterized by phenylpropanoid and terpenoid metabolites. In the aboveground parts of A. rugosa the following phenolic compounds were found: simple phenols, phenolcarboxylic acids, lignans, flavonoids and coumarins. In A. rugosa essential oil, the terpenoid compounds are represented by mono- and sesquiterpenoids, as well as di- and triterpenoids. Various aspects of the biological activity of the species and its components are considered. Extracts of A. rugosa, as well as their individual components, have varied bioactivity like antioxidant, anticancer, anti-inflammatory, antiviral, antibacterial, antimicrobial, and antifungal.
Full Text

About the authors
L. M. Belenovskaya
Komarov Botanical Institute RAS
Email: ANaumenko@binran.ru
Russian Federation, Saint-Petersburg
A. A. Naumenko
Komarov Botanical Institute RAS
Author for correspondence.
Email: ANaumenko@binran.ru
Russian Federation, Saint-Petersburg
References
- Hong M., Deepa P., Lee K.-Y., Kim K., Sowndhararajan K., Kim S. 2022. Chemical diversity of essential oils from Korean native populations of Agastache rugosa (Korean mint). — Molecules. 27(19): 6341. https://doi.org/10.3390/molecules27196341
- Probatova N. S., Krestovskaya T. V. 1995. Lamiaceae. — In: [Vascular plants of the Soviet Far East]. Vol. 7. St. Petersburg. P. 294—379. (In Russian)
- Suh Y. 2007. Gen. Agastache. — In: The genera of vascular plants of Korea. Seoul. P. 823.
- Yeo H. J., Park C. H., Park Y. E., Hyeon H., Kim J. K., Lee S. Y., Park S. U. 2021. Metabolic profiling and antioxidant activity during flower development in Agastache rugosa. — Physiol. Mol. Biol. Plants. 27(3): 445—455. https://doi.org/10.1007/s12298-021-00945-z
- Anand S., Pang E., Livanos G., Mantri N. 2018. Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and poly-phenol content. — Molecules. 23(1): 108. https://doi.org/10.3390/molecules23010108
- Fujita S., Fujita Y. 1972. Miscellaneous contributions to the essential oils of the plants from various territories. XXIX. Essential oil of Agastache rugosa O. Kuntze (5). Sesquiterpene hydrocarbons in the oil. — Yakugaku Zasshi 92(7): 908—909. https://doi.org/10.1248/yakushi1947.92.7_908
- Fujita S., Fujita Y. 1973. Miscellaneous contributions of the essential oils of the plants from various territories. XXXIII. Essential oil of Agastache rugosa O. Kuntze (6). — Yakugaku Zasshi. 93(12): 1679—1681. https://doi.org/10.1248/yakushi1947.93.12_1679
- Ahn B., Yang Ch.B. 1991. Volatile flavor components of Bangah (Agastache rugosa O. Kuntze) herb. — Korean J. Food Sci. Technology. 23(5): 582—586. https://www.kjfst.or.kr/journal/view.html?uid=3670&page=582&s_v=23&s_n=5
- Charles D. J., Simon J. E., Widrlechner M. P. 1991. Characterization of the essential oil constituents of Agastache species. — J. Agric. Food Chem. 39(11): 1946—1949. https://doi.org/10.1021/jf00011a011
- Weyerstahl P., Marschall H., Manteuffel E., Huneck S. 1992. Volatile constituents of Agastache rugosa. — J. Essent. Oil Res. 4(6): 585—587. https://doi.org/10.1080/10412905.1992.9698139
- Düng N. X., Cu L. D., Thái N. H., Mõi L. D., Hac L. V., Leclercq P. A. 1996. Constituents of the leaf and flower oils of Agastache rugosa (Fisch. et Mey.) O. Kuntze from Vietnam. — J. Essent. Oil Res. 8(2): 135—138. https://doi.org/10.1080/10412905.1996.9700580
- Yang D., Wang F., Su J., Zeng L. 2000. [Chemical composition of essential oil in stems, leaves and flowers of Agastache rugosa]. — J. Chin. Med. Mat. 23(3): 149—151. https://pubmed.ncbi.nlm.nih.gov/12575134/ (In Chinese)
- Wang J. C. 2010. [GC—MS-Analysis of chemical composition of volatile oil from Agastache rugosa]. — Food Sci. 31(8): 223—225. https://www.spkx.net.cn/EN/Y2010/V31/I8/223
- Gong H., Zhou X., Zhu M., Ma X., Zhang X., Tian Sh. 2012. Constituents of essential oil isolated from the dried flower and leaf of Agastache rugosa (Fisch. et C. A. Mey) O. Kuntze from Xinjiang, in China. — J. Essent. Oil Bearing Plants. 15(4): 534—538. https://doi.org/10.1080/0972060X.2012.10644084
- Lim S. S., Jang J. M., Park W. T., Uddin M. R., Chae S. C., Kim H. H., Park S. U. 2013. Chemical composition of essential oils from flower and leaf of Korean mint, Agastache rugosa. — Asian J. Chem. 25(8): 4361—4363. http://doi.org/10.14233/ajchem.2013.13977
- Li H. Q., Liu Q. Z., Liu Z. L., Du Sh. Sh., Deng Z. W. 2013. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. — Molecules. 18(4): 4170—4180. https://doi.org/10.3390/molecules18044170
- Lee T. H., Park S., Yoo G., Jang Ch., Kim M. H., Kim S. H., Kim S. Y. 2016. Demethyleugenol β-glucopyranoside isolated from Agastache rugosa decreases melanin synthesis via down-regulation of MITF and SOX9. — J. Agric. Food Chem. 64(41): 7733—7742. http://doi.org/10.1021/acs.jafc.6b03256
- Seo Y. H., Kang S. Y., Shin J. S., Ryu S. M., Lee A Y., Choi G. S., Moon B. C., Jang D. S., Shim S. H., Lee D., Lee K. T., Lee J. 2019. Chemical constituents from the aerial parts of Agastache rugosa and their inhibitory activities on prostaglandin E2 production in lipopolysaccharid-treated Raw 264.7 macrophages. — J. Nat. Prod. 82(12): 3379—3385. https://doi.org/10.1021/acs.jnatprod.9b00697
- Kim J. B., Kim J. B., Cho K. J., Hwang Y. S., Park R. D. 1999. Isolation, identification and activity of rosmarinic acid, a potent antioxidant extracted from Korean Agastache rugosa. — J. Kor. Soc. Agric. Chem. Biotechnol. 42(3): 262—266. https://koreascience.kr/article/JAKO199903043022025.pdf
- Tuan P. A., Park W. T., Xu H., Park N. I., Park S. H. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. — J. Agr. Food Chem. 60(23): 5945—5951. https://doi.org/10.1021/jf300833m
- Zielińska S., Kolniak-Ostek J., Dziadas M., Oszmiański J., Matkowski A. 2016. Characterization of polyphenols in Agastache rugosa leaves and inflorescences by UPLC-qTOF-MS following FCPC-separation. — J. Liq. Chromatorg. Relat. Technol. 39(4): 209—219. https://doi.org/10.1080/10826076.2016.1147461
- Cao P., Xie P., Wang X., Wang J., Wei J., Kang W. Y. 2017. Chemical constituents and coagulation activity of Agastache rugosa. — BMC Complement. Altern. Med. 17: 93. https://doi.org/10.1186/s12906-017-1592-8
- Lee J. J., Lee J. H., Gu M. J., Han J. H., Cho W. K., Ma Y. 2017. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevent atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIR1 and p27KIP. — J. Funct. Foods. 30: 30—38. https://doi.org/10.1016/j.jff.2016.12.025
- Yuk H. J., Won Ryu H. W., Kim D. S. 2023. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Foods. 12(3): 573. https://doi.org/10.3390/foods12030573
- Zakharov A. M., Dolya V. S., Zakharova O. I., Bespalova A. S., Litvinova N. V. 1988. Essential and fatty oils of Agastache rugosa. — Chem. Nat. Compd. 24(3): 384—385. https://doi.org/10.1007/bf00598595
- Lee C. H., Kim N. H., Kho Y. E. 2002. Agastinol and agastenol, novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. — J. Nat. Prod. 65(3): 414—416. https://doi.org/10.1021/np010425e
- Zakharova O. I., Zakharov A. M., Glyzin V. I. 1979. Flavonoids of Agastache rugosa. — Chem. Nat. Compd. 15(5): 561—564.
- Itokawa H., Suto K., Takeya K. 1981. Structures of agastachoside and agastachin, new glucosylflavones isolated from Agastache rugosa. — Chem. Pharm. Bull. 29(6): 1777—1779. https://doi.org/10.1248/cpb.29.1777
- Vogelman J. E. 1984. Flavonoids of Agastache section Agastache. — Biochem. Syst. Ecol. 12(4): 363—366. https://doi.org/10.1016/0305—1978(84)90067-X
- Park S., Kim N., Yoo G., Kim Y., Lee T. H., Kim S. Y., Kim S. H. 2016. A new flavone glycoside from the leaves of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Biochem. Syst. Ecol. 67: 17—21. https://doi.org/10.1016/j.bse.2016.05.019
- Cao P., Xie P., Wang X., Wang J., Wei J., Kang W. Y. 2017. Chemical constituents and coagulation activity of Agastache rugosa. — BMC Complement. Altern. Med. 17: 93. https://doi.org/10.1186/s12906-017-1592-8
- An J. H., Yuk H. J., Kim D. Y., Nho Ch.W., Lee D., Ryu H. W., Oh S. R. 2018. Evaluation of phytochemicals in Agastache rugosa (Fisch. et C. A. Mey.) Kuntze at different growth stages by UPLC-QTof-MS. — Ind. Crops Prod. 112: 608—616. https://doi.org/10.1016/j.indcrop.2017.12.050
- Hou H. D., Wu Ch. Y., Zhou J., Long F., Shen H., Xu J. D., Zhou Sh. Sh., Mao Q. M., Wei Y. J., Li S. L. 2023. Accumulation patterns of major bioactive components in two chemotypes of Agastache rugosa during flower development evaluated by GC-QQQ-MS/MS and UPLC-QTOF-MS/MS analysis. — Ind. Crops Prod. 191(Part A): 115942. https://doi.org/10.1016/j.indcrop.2022.115942
- Dang J., Lin G., Liu L., Zhou P., Shao Y., Dai Sh., Sang M., Jiang Zh., Liu C., Wu Q. 2022. Comparison of pulegone and estragol chemotypes provides new insight into volatile oil biosynthesis of Agastache rugosa. — Front. Plant Sci. 13: 850130. https://doi.org/10.3389/fpls.2022.850130
- Choi J. S., Song B. M., Park H. J. 2016. Gas chromatographic analysis and cholinesterase activity of the essential oil from Korean Agastache rugosa. — Korean J. Pharmacogn. 47(2): 192—196. https://www.dbpia.co.kr/journal/articleDetail/NODE11128802 (In Korean)
- Zou Z. M., Cong P. Z. 1991. [Studies on the chemical constituents from the roots of Agastache rugose]. — Acta Pharmacol. Sinica (Yao Xue Xue Bao). 26(12): 906—910. https://pubmed.ncbi.nlm.nih.gov/1823989/ (In Chinense)
- Lee H. K., Byon S. J., Oh S. R., Kim J. I., Kim Y. H., Lee Ch.O. 1994. Diterpenoids from the roots of Agastache rugosa and their cytotoxic activity. — Korean J. Pharmacogn. 25(4): 319—327. https://www.dbpia.co.kr/journal/articleDetail/NODE11127421
- Lee H. K., Oh S. R., Kim J. I., Kim J. W., Lee Ch.O. 1995. Agastaquinone, a new cytotoxic diterpenoid quinone from Agastache rugosa. — J. Nat. Prod. 58(11): 1718—1721. https://doi.org/10.1021/np50125a011
- Min B. S., Hattori M., Lee H. K., Kim Y. H. 1999. Inhibitory constituents against HIV-1 protease from Agastache rugosa. — Arch. Pharm. Res. 22(1): 75—77. https://doi.org/10.1007/BF02976440
- Fujita Y., Ueda T. 1957. [Miscellaneous Contributions to the Essentia Oils of the Plants from Various Territories. VI. Essential Oil of Agastache ragosa O. Kuntze. Part 3]. — Nippon Kagaku Zasshi. 78(10): 1541—1542. https://doi.org/10.1246/nikkashi1948.78.1541 (In Japanese)
- Ahn B., Yang Ch. 1991. Chemical composition of Bangah (Agastache rugosa O. Kuntze) herb. — Korean J. Food Sci. and Technology. 23(3): 375—378. 0367-6293(pISSN).
- Yang D., Wang F., Su J., Zeng L. 2000. [Chemical composition of essential oil stems, leaves and flowers of Agastache rugosa]. — J. Chin. Med. Mat. 23(3): 149—151. PMID: 12575134.
- Yamani H., Mantri N., Morrison P. D., Pang E. 2014. Analysis of volatile organic compounds from leaves, flowers spikes, and nectar of Australian grown Agastache rugosa. — BMC Complement. Altern. Med. 14: 495. https://doi.org/10.1186/1472-6882-14-495
- Kim J., Jang J., Kwon O. 2023. P23-043-23 Effects and Safety of Agastache rugosa with supervised resistance exercise in middle-aged healthy adults. — Current developments in nutrition. 7(Suppl.1): 20—21. https://doi.org/10.1016/j.cdnut.2023.100154
- Hong S., Cha K. H., Kwon D. Y., Son Y. J., Kim S. M., Choi J.-H., Yoo G., Nho C. W. 2021. Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. — Phytomedicine. 84: 153517. https://doi.org/10.1016/j.phymed.2021.153517
- Jang S.-A., Hwang Y.-H., Kim T., Yang H., Lee J., Seo Y. H., Park J.-I., Ha H. 2020. Water extract of Agastache rugosa prevents ovariectomy-induced bone loss by inhibiting osteoclastogenesis. — Foods. 9(9): 1181. https://doi.org/10.3390/foods9091181
- Nam H.-H., Kim J. S., Lee J., Seo Y. H., Kim H. S., Ryu S. M., Choi G., Moon B. Ch., Lee A. Y. 2020. Pharmacological effects of Agastache rugosa against gastritis using a network pharmacology approach. — Biomolecules. 10(9): 1298. https://doi.org/10.3390/biom10091298
- Nan L., Nam H.-H., Choo B.-K. 2022. Agastache rugosa inhibits LPS-induced by RAW264.7 cellular inflammation and ameliorates oesophageal tissue damage from acute reflux esophagitis in rats. — Food Biosci. 50(B): 102187. https://doi.org/10.1016/j.fbio.2022.102187
- Gong H., Li S., He L., Kasimu R. 2017. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. — BMC Complement Altern. Med. 17: 95. https://doi.org/10.1186/s12906-017-1605-7
- Moon H., Kim M. J., Son H. J., Kweon H.-J., Kim J. T., Kim Y., Shim J., Suh B.-C., Rhyu M-R. 2015. Five hTRPA1 agonists found in indigenous Korean mint, Agastache rugosa. — PLoS One. 10(5): e0127060. https://doi.org/10.1371/journal.pone.0127060
- Oh Y., Lim H.-W., Huang Y.-H., Kwon H.-S., Jin С. D., Kim K., Lim C.-J. 2016. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. — J. Photochem. Photobiol. B. 163: 170—176. https://doi.org/10.1016/j.jphotobiol.2016.08.026
- Shin D., Lee Y., Huang Y.-H., Lim H.-W., Jang K., Kim D.-D., Lim C.-J. 2018. Probiotic fermentation augments the skin anti-photoaging properties of Agastache rugosa through up-regulating antioxidant components in UV-B-irradiated HaCaT keratinocytes. — BMC Complement Altern. Med. 18(1): 196. https://doi.org/10.1186/s12906-018-2194-9
- Yun M.-S., Kim Ch., Hwang J.-K. 2019. Agastache rugosa Kuntze attenuates UVB-induced photoaging in hairless mice through the regulation of MAPK/AP-1 and TGF-β/ Smad pathways. — J. Microbiol. Biotechnol. 29(9): 1349—1360. https://doi.org/10.4014/jmb.1908.08020
- Seo H., Kim Ch., Kim M.-B., Hwang J.-K. 2019. Anti-photoaging effect of Korean mint (Agastache rugosa Kuntze) extract on UVB-irradiated human dermal fibroblasts. — Prev. Nutr. Food Sci. 24(4): 442—448. https://doi.org/10.3746/pnf.2019.24.4.442
- Lee Y., Lim H. W., Ryu I. W., Huang Y. H., Park M., Chi Y. M., Lim C. J. 2020. Anti-inflammatory, barrier-protective, and antiwrinkle properties of Agastache rugosa Kuntze in human epidermal keratinocytes. — Biomed. Res. Int. 2020: 1759067. https://doi.org/10.1155/2020/1759067
- Park C. H., Yeo H. J., Baskar T. B., Park Y. E., Park J. S., Lee S. Y., Park S. U. 2019. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. — Antioxidants. 8(3): 75. https://doi.org/10.3390/antiox8030075
- Haiyan G., Lijuan H., Shaoyu L., Chen Z., Ashraf M. A. 2016. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. — Saudi J. Biol. Sci. 23(4): 524—530. https://doi.org/10.1016/j.sjbs.2016.02.020
- Yeo H. J., Kwon M. J., Han S. Y., Jeong J. C., Kim C. Y., Park S. U., Park C. H. 2023. Effects of carbohydrates on rosmarinic acid production and in vitro antimicrobial activities in hairy root cultures of Agastache rugosa. — Plants (Basel). 12(4): 797. https://doi.org/10.3390/plants12040797
- Pan Y.-N., Zhao Y., Zhao R.-J., Yang X.-R., Li T.-C., Hu T.-T., Yang Y., Zhao J.-H. 2018. [Effects of five Chinese herbs on human demodicid mites in vitro]. — Chin. J. Schisto. Control. 31(3): 301—304. https://www.zgxfzz.com/EN/Y2019/V31/I3/301
- Sun J., Sun P., Kang C., Zhang L., Guo L., Kou Y. 2022. Chemical composition and biological activities of essential oils from six Lamiaceae folk medicinal plants. — Front. Plant Sci. 13: 919294. https://doi.org/10.3389/fpls.2022.919294
- Hong M., Jang H., Bo S., Kim M., Deepa P., Park J., Sowndhararajan K., Kim S. 2022. Changes in human electroencephalographic activity in response to Agastache rugosa essential oil exposure. — Behav. Sci. 12(7): 238. https://doi.org/10.3390/bs12070238
- Desta K. T., Kim G.-S., Kim Y.-H., Lee W. S., Lee S. J., Jin J. S., El-Aty A. M. A., Shin H.-C., Shim J.-H., Shin S. C. 2016. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. — Biomed. Chromatogr. 30(2): 225—231. https://doi.org/10.1002/bmc.3539
- Lee H. W., Ryu H. W., Baek S. C., Kang M.-G., Park D., Han H.-Y., An J. H., Oh S.-R., Kim H. 2017. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. — Int. J. Biol. Macromol. 104(Pt A): 547—553. https://doi.org/10.1016/j.ijbiomac.2017.06.076
- Yuk H. J., Ryu H. W., Kim D.-S. 2023. Potent xanthine oxidase inhibitory activity of constituents of Agastache rugosa (Fisch. et C. A. Mey.) Kuntze. — Foods. 12(3): 573. https://doi.org/10.3390/foods12030573
- Kim N. Y., Kwon H. S., Lee H. Y. 2017. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. — J. Cosmet. Dermatol. 16(3): 407—415. https://doi.org/10.1111/jocd.12264
- Kwon E.-B., Kang M.-J., Ryu H. W., Lee S., Lee J.-W., Lee M. K., Lee H.-S., Lee S. U., Oh S.-R., Kim M.-O. 2020. Acacetin enhances glucose uptake through insulin-independent GLUT4 translocation in L6 myotubes. — Phytomedicine. 68: 153178. https://doi.org/10.1016/j.phymed.2020.153178
- Wang X., Perumalsamy H., Kwon H. W., Na Y.-E., Ahn Y.-J. 2015. Effects and possible mechanisms of action of acacetin on the behavior and eye morphology of Drosophila models of Alzheimer’s disease. — Sci. Rep. 5: 16127. https://doi.org/10.1038/srep16127
- Cho H.-I., Park J.-H., Choi H.-S., Kwak J. H., Lee D.-U., Lee S. K., Lee S.-M. 2014. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. — J. Nat. Prod. 77(11): 2497—2503. https://doi.org/10.1021/np500537x
- Cho H.-I., Hong J.-M., Choi J.-W., Choi H.-S., Kwak J. H., Lee D.-U., Lee S. K., Lee S.-M. 2015. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. — Eur. J. Pharmacol. 764: 613—621. https://doi.org/10.1016/j.ejphar.2015.08.001
- Park S.-J., Lee K., Kang M.-A., Kim T.-H., Jang H.-J., Ryu H. W., Oh S.-R., Lee H.-J. 2021. Tilianin attenuates HDM-induced allergic asthma by suppressing Th2-immune responses via downregulation of IRF4 in dendritic cells. — Phytomedicine. 80: 153392. https://doi.org/10.1016/j.phymed.2020.153392
- Sarheed M. M., Rajabi F., Kunert M., Boland W., Wetters S., Miadowitz K., Kaźmierczak A., Sahi V. P., Nick P. 2020. Cellular base of mint allelopathy: menthone affects plant microtubules. — Front. Plant Sci. 11: 546345. https://doi.org/10.3389/fpls.2020.546345
Supplementary files
