The rhythmicity of seasonal dynamics in Abies sibirica (Pinaceae) stem and lateral branches apical growth in Yekaterinburg

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Seasonal changes in the quantitative characteristics of the apical growth of the stem and lateral branches of different levels of the crown were studied in young Siberian fir (Abies sibirica Ledeb.) trees growing under the forest canopy in Yekaterinburg (Middle Urals, Russia).The analysis of the obtained data included the describing of seasonal growth dynamics, identifying the rhythm signs and determining the degree of air temperature and precipitation influence on the rate of growth processes. In the growth dynamics there were found four stages lasting 2–3 weeks each. There also has been established, that the change in growth rates at the intensive and additional stages occurs quasi-rhythmically. The average numbers of observed oscillations is 4 – at the stem and 4–5 – at the branches and is not dependent on the changes in weather conditions. The oscillation’s period is 8–9 days. It allows refer them to infradian rhythms. The growth of the stem begins one week later than the lateral branches. At the stage of intensive growth stems growth rate overtakes branches. Shoots of branches at one level of the crown are divided into two groups, differing in the degree of oscillation phase coincidence. In these groups fluctuations in growth rates occur in opposite phases. In a quantitatively larger group of branches the apical growth rhythms are synchronous with the rhythms of tree stems. The temperature influence on the onset and the duration of growth stages is stronger than of the precipitation amount. The growth rhythms of the stem and branches have significant similarities. Their nature is associated with the work of endogenous (genetic and hormonal) system of the apical meristem development regulation. The dynamic component of seasonal growth rate changes includes the stage of preliminary shoot growth, on which cells are formed in addition to those already formed during the bud growth phase. Further stages of intensive and additional growth begin. They have an oscillatory character. Apical growth rate oscillations arise due to the synchronicity of the “division-extension” cycles of large groups of cells in the meristem parenchyma. At the stage of shoot growth cessation the number of capable to division cells decreases until proliferation completely stops.

作者简介

S. Shavnin

Institute Botanic Garden of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sash@botgard.uran.ru
俄罗斯联邦, Yekaterinburg

D. Golikov

Institute Botanic Garden of the Ural Branch of the Russian Academy of Sciences

Email: sash@botgard.uran.ru
俄罗斯联邦, Yekaterinburg

A. Montile

Institute Botanic Garden of the Ural Branch of the Russian Academy of Sciences

Email: org17@mail.ru
俄罗斯联邦, Yekaterinburg

A. Montile

Institute Botanic Garden of the Ural Branch of the Russian Academy of Sciences

Email: sash@botgard.uran.ru
俄罗斯联邦, Yekaterinburg

参考

  1. Luttge U., Hertel B. 2009. Diurnal and annual rhythms in trees. — Trees. 23(4): 683–700. https://doi.org/10.1007/s00468-009-0324-1
  2. Zhukovskaya N. V., Bystrova E. I., Lunkova N. F., Ivanov V. B. 2020. Root growth at the cellular level in plants of different species: comparative analysis. — Rus. J. Plant Phys. 67(4): 618–625. https://doi.org/10.1134/S1021443720040214
  3. Vaganov E. A., Shiyatov S. G. 2005. Dendroclimatic and dendroecological studies in Northern Eurasia. — Rus. J. Forest Sci. (Lesovedenie). 4: 18–27. (In Russian)
  4. Rossi S., Rathgeber C. B. K., Deslauriers A. 2009 Comparing needle and shoot phenology with xylem development on three conifer species in Italy. — Ann. For. Sci. 66(2): 206. https://doi.org/10.1051/forest/2008088
  5. Moser L., Fonti P., Büntgen U., Esper J., Luterbacher J., Franzen J., Frank D. 2010. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. — Tree Physiol. 30(2): 225–233. https://doi.org/10.1093/treephys/tpp108
  6. Cuny H. E., Rathgeber C. B., Lebourgeois F., Fortin M., Fournier M. 2012. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. — Tree Physiol. 32(5): 612–625. https://doi.org/10.1093/treephys/tps039
  7. Zhang Y., Jiang Y., Wen Y., Ding X., Wang B., Xu J. 2019. Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an Alpine habitat. — Forests. 10(7): 574. https://doi.org/10.3390/f10070574
  8. Cook E. R., Kairiukstis L. A. 1990. Methods of Dendrochronology. Applications in the Environmental Sciences. Dordrecht. 394 p. http://dx.doi.org/10.1007/978-94-015-7879-0
  9. Schweingruber F. H., Aellen-Rumo K., Weber U., Wehrli U. 1990. Rhythmic growth fluctuations in forest trees of Central Europe and the Front Range in Colorado. — Trees. 4(2): 99–106. https://doi.org/10.1007/BF00226072
  10. Vaganov E. A., Smirnov V. V., Terskov I. A. 1975. [On the possibility of determiningthe rate of seasonal increment in trunk thickness and variations in water regime of treesfrom photometric curves]. — Ekologiya. 2: 45–53. (In Russian)
  11. Vaganov E. A., Shashkin A. V. 2000. [Growth and structure of the conifers’ tree rings]. Novosibirsk. 232 p. (In Russian)
  12. Mikhalevskaya O. B. 1987. [Rhythmicity of growth processes and morphogenesis of shoots in the genus Quercus L.]. — In: [Morphogenesis and rhythm of development of higher plants]. Moscow. P. 33–38.
  13. Mikhalevskaya O. B. 2008. Growth rhythms at different stages of shoot morphogenesis in woody plants. — Rus. J. Dev. Biol. 39(2): 65–72. https://doi.org/10.1134/S106236040802001X
  14. Herrmann S., Recht S., Boenn M., Feldhahn L., Angay O., Fleischmann F., Tarkka M. T., Grams T. E. E., Buscot F. 2015. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. — J. Exp. Bot. 66(22): 7113–7127. https://doi.org/10.1093/jxb/erv408
  15. Hilton R. J., Khatamian H. 1973.Diurnal variation in elongation rates of roots of woody plants. — Can. J. Pl. Sci. 53(3): 699–700. https://doi.org/10.4141/cjps73-138
  16. Ding X., Jiang Y., Xue F., Zhang Y., Wang M., Kang M., Xu H. 2021. Intra-annual growth dynamics of Picea meyeri needles, shoots, and stems on Luya Mountain, North-central China. — Trees. 35(2): 637–648. https://doi.org/10.1007/s00468-020-02065-9
  17. Vince-Prue D., Clapham D., Ekberg I., Norell L. 2001.Circadian timekeeping for the photoperiodic control of budset in Picea abies (Norway spruce) seedlings. — Biol. Rhythm Res. 32(4): 479–487. https://doi.org/10.1076/brhm.32.4.479.1336
  18. Gyllenstrand N., Karlgren A., Clapham D., Holm K., Hall A., Gould P., Källman Th., Lagercrantz U. 2014. No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). — Pl. Cell Physiol. 55(3): 535–550. https://doi.org/10.1093/pcp/pct199
  19. Lanner R. M. 2017. Primordium initiation drives tree growth. — Ann. For. Sci. 74: 11. https://doi.org/10.1007/s13595-016-0612-z
  20. Schiestl-Aalto P., Nikinmaa E., Mäkelä A. 2013.Duration of shoot elongation in Scots pine varies within the crown and between years. — Ann. Bot. 112(6): 1181–1191. https://doi.org/10.1093/aob/mct180
  21. Huang J. G., Deslauriers A., Rossi S. 2014. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. — New Phytol. 203(3): 831–841. https://doi.org/10.1111/nph.12859
  22. Antonucci S., Rossi S., Deslauriers A., Lombardi F., Marchetti M., Tognetti R. 2015. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. — Tree Physiol. 35(10): 1086–1094. https://doi.org/10.1093/treephys/tpv077
  23. Begum S., Nakaba S., Yamagishi Y., Oribe Y., Funada R. 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. — Physiol. Plant. 147(1): 46–54. https://doi.org/10.1111/j.1399-3054.2012.01663.x
  24. Salminen H., Jalkanen R. 2007. Intra-annual height increment of Pinus sylvestris at high latitudes in Finland. — Tree Physiol. 27(9): 1347–1353. https://doi.org/10.1093/treephys/27.9.1347
  25. Aloni R. 2013.The role of hormones in controlling vascular differentiation. — In: Cellular aspects of wood formation. Plant Cell Monographs, 20. P. 99–139. https://doi.org/10.1007/978-3-642-36491-4_4
  26. Sundberg B., Uggla C. 1998. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. — Physiol. Plant. 104(1): 22–29. https://doi.org/10.1034/j.1399-3054.1998.1040104.x
  27. Little C. H. A., MacDonald J. E. 2003. Effects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca. — Tree Physiol. 23(2): 73–83. https://doi.org/10.1093/treephys/23.2.73
  28. MacDonald J. E., Little C. H. 2006. Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings. — Tree Physiol. 26(10): 1271–1276. https://doi.org/10.1093/treephys/26.10.1271
  29. Jackson S. D. 2009. Plant responses to photoperiod. — New Phytol. 181(3): 517–531. https://doi.org/10.1111/j.1469-8137.2008.02681.x
  30. Ren P., Rossi S., Gricar J., Liang E., Cufar K. 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? — Ann. Bot. 115(4): 629–639. https://doi.org/10.1093/aob/mcu259
  31. Zhang J., Gou X., Pederson N., Zhang F., Niu H., Zhao S., Wang F. 2018. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. — Tree Physiol. 38(6): 840–852. https://doi.org/10.1093/treephys/tpx160
  32. Skupchenko V. B. 2019. Cell growth and proliferation in ground tissue of developing terminal shoot in Picea abies (Pinaceae). — Rastitelnye Resursy. 55(2): 195–212. https://doi.org/10.1134/S0033994619020092. (In Russian)
  33. Afonin A. A., Zaytsev S. A. 2016. Cyclicity of the average daily radial growth of bearing shoots of European willow (Salix alba L.) in the Bryansk forestland. — Lesnoy Zhurnal (Russian Forestry Journal). 3: 66–76. https://doi.org/10.17238/issn0536-1036.2016.3.66 (In Russian)
  34. Afonin A. A. 2019a. Seasonal dynamics of basket willow shoots growth (Salix viminalis). — University Proceedings. Volga Region. Natural Sciences. 4(28): 26–34. https://doi.org/10.21685/2307-9150-2019-4-3 (In Russian)
  35. Afonin A. A. 2019b. Rhythm of linear growth of annual shoots of almond willow. — Modern Science: actual problems of theory and practice. Natural and Technical Sciences. 1: 10–16. http://www.nauteh-journal.ru/index.php/3/2019/№1/80bc8b4e-f1ee-4e42-93a0-20d461002813?lang=en_EN (In Russian)
  36. Afonin A. A. 2021. [Epigenetic variability in the structure of seasonal dynamics of shoot development of almond willow (Salix triandra, Salicaceae)]. — Vestnik of Orenburg State University. 2(38): 1–14. https://doi.org/10.32516/2303-9922.2021.38.1 (In Russian)
  37. Shavnin S. A., Montile A. A., Semkina L. A., Montile A. I. 2024. Seasonal dynamics of shoot growth in Forsythia ovata Nakai plants: rhythmicity of apical and radial growth. — Biology Bulletin Reviews. 14(1): 85–95. https://doi.org/10.1134/S2079086424010092
  38. Shavnin S. A., Montile A. A., Tishkina E. A., Epanchinceva O. V. 2023. Seasonal dynamics and growth rhythmof shoots of Salix ’Bullata’ plants. — Agrarian Bulletin of the Urals. 23(12): 94–110. https://elibrary.ru/item.asp?id=56661423 (In Russian)
  39. Shi B., Vernoux T. 2022. Hormonal control of cell identity and growth in the shoot apical meristem. – Cur. Op. Plant Biol. 65: 102111. https://doi.org/10.1016/j.pbi.2021.102111
  40. Torres-Martínez H. H., Hernández-Herrera P., Corkidi G., Dubrovsky J. G. 2020.From one cell to many: Morphogenetic field of lateral root founder cells in Arabidopsis thaliana is built by gradual recruitment. — PNAS. 117: 20943–20949. https://doi.org/10.1073/pnas.2006387117
  41. Torres-Martínez H. H., Napsucialy-Mendivil S., Dubrovsky J. G. 2022. Cellular and molecular bases of lateral root initiation and morphogenesis. — Cur. Op. Plant Biol. 65: 102115. https://doi.org/10.1016/j.pbi.2021.102115
  42. Srivastava L. M. 2002. Plant growth and development. Hormones and the environment. Oxford. 772 p.
  43. Xue Z., Liu L., Zhang C. 2020. Regulation of shoot apical meristem and axillary meristem development in plants. — Int. J. Mol. Sci. 21(8): 2917. https://doi.org/10.3390/ijms21082917
  44. Lutova L. A., Ezhova T. A., Dodueva I. E., Osipova M. A. 2010. [Genetics of plant development: for biological specialities]. St. Petersburg. 432 p. (In Russian)
  45. Tvorogova V. E., Osipova M. A., Dodueva I. E., Lutova L. A. 2013. Interaction between transcription factors and phytohormones in the regulation of plant meristem activity. — Rus. J. Genet. Appl. Res. 3(5): 325–337. https://doi.org/10.1134/S2079059713050110
  46. Kuehny J. S., Miller W. B., Decoteau D. R. 1997. Changes in carbohydrate and nitrogen relationships during episodic growth of Ligustrum japinicum Thunb. — J. Am. Soc. Hort. Sci. 122(5): 634–641. https://doi.org/10.21273/jashs.122.5.634
  47. McCown B. H. 2000. Special symposium: In vitro plant recalcitrance. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. — In Vitro Cell. Den. Biol. Plant. 36(3): 149–154. https://doi.org/10.1007/s11627-000-0030-6
  48. Barthélémy D., Caraglio Y. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. — Ann. Bot. 99(3): 375–407. https://doi.org/10.1093/aob/mcl260
  49. Smyth D. R., Bowman J. L., Meyerowitz E. M. 1990. Early flower development in Arabidopsis. — Plant Cell. 2(8): 755–67. PMID: 2152125; PMCID: PMC159928; https://doi.org/10.1105/tpc.2.8.755
  50. Kinoshita A., Vayssières A., Richter R., Sang Q., Roggen A., van Driel A. D., Smith R. S., Coupland G. 2020. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. — eLife. 9: e60661. https://doi.org/10.7554/eLife.60661
  51. Uranov A. A.1975. Age spectrum of cenopopulations as a function of time and energy wave processes. — Nauchnye Doklady Vysshey Shkoly. Biologicheskie Nauki. 2: 7–34. (In Russian)
  52. Yurkevich I. D., Golod D. S., Yaroshevich E. P. 1980. [Phenological studies of woody and herbaceous plants (methodological manual)]. Minsk. 88 p. (In Russian)
  53. Desprez-Loustau Ml., Dupuis F. 1994. Variation in the phenology of shoot elongation between geographic provenances of maritime pine (Pinus pinaster) — implications for the synchrony with the phenology of the twisting rust fungus, Melampsora pinitorqua. — Ann. For. Sci. 51(6): 553–568. https://doi.org/10.1051/forest:19940602
  54. Molchanov A. A., Smirnov V. V. 1967. [Methodology for studying of the woody plantsgrowth]. Moscow. 95 p. (In Russian)
  55. Weather archive in Yekaterinburg. https://rp5.ru/Погода_в_Екатеринбурге
  56. Skupchenko V. B. 2022. Morphogenesis and growth of vegetative shoots of Pseudotsuga menziesii (Pinaceae), introduced toSt. Petersburg. — Rastitelnye Resursy. 58(1): 43–57. https://elibrary.ru/item.asp?id=48050563 (In Russian)
  57. Medvedev S. S., Sharova E. I. 2014. [Biology of plant development. Volume 2. Growth and morphogenesis. Textbook]. Nizhnevartovsk. 235 p. (In Russian)
  58. Vernoux T., Besnard F., Godin C. 2021. What shoots can teach about theories of plant form. — Nat. Plants. 7(6): 716–724. https://doi.org/10.1038/s41477-021-00930-0
  59. Yang W., Cortijo S., Korsbo N., Roszak P., Schiessl K., Gurzadyan A., Wightman R., Jönsson H., Meyerowitz E. 2021. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. — Science. 371(6536): 1350–1355. https://doi.org/10.1126/science.abe2305
  60. Ivanov V., Dubrovsky J. 1997. Estimation of the cell-cycle duration in the root apical meristem: a model of linkage between cell-cycle duration, rate of cell production, and rate of root growth. — Int. J. Plant Sci. 158(6): 757–763. https://doi.org/10.1086/297487

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024