Numerical Method For Solving the Inverse Problem of Nonisothermal Filtration in Double-Porosity Media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A mathematical model of nonisothermal filtration of a fluid into a medium with double porosity is constructed. The influence of the filtration and thermophysical parameters of a fractured porous formation on the temperature and pressure in the bottom of a vertical oil well due to production is studied. Based on the proposed model, a computational algorithm for interpreting the results of the thermohydrodynamic studies of vertical wells is developed. Measurements of the pressure and temperature in the bottom of the well after its start-up are used as the initial information.

About the authors

M. N. Shamsiev

Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences; Almetyevsk State Oil Institute

Email: mshamsiev@imm.knc.ru
Kazan, Russia; Almetyevsk, Russia

M. Kh. Khairullin

Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences; Almetyevsk State Oil Institute

Email: khairullin@imm.knc.ru
Kazan, Russia; Almetyevsk, Russia

P. E. Morozov

Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences; Almetyevsk State Oil Institute

Email: khairullin@imm.knc.ru
Kazan, Russia; Almetyevsk, Russia

V. R. Gadil’shina

Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences; Almetyevsk State Oil Institute

Email: khairullin@imm.knc.ru
Kazan, Russia; Almetyevsk, Russia

A. I. Abdullin

Institute of Mechanics and Engineering, Kazan Scientific Center, Russian Academy of Sciences

Email: khairullin@imm.knc.ru
Kazan, Russia

A. V. Nasybullin

Almetyevsk State Oil Institute

Author for correspondence.
Email: khairullin@imm.knc.ru
Almetyevsk, Russia

References

  1. Чекалюк Э.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
  2. Бадертдинова Е.Р., Хайруллин М.Х., Шамсиев М.Н. Термогидродинамические исследования вертикальных нефтяных скважин // ТВТ. 2011. Т. 49. № 5. С. 795.
  3. Хайруллин М.Х., Шамсиев М.Н., Гадельшина В.Р., Морозов П.Е., Абдуллин А.И., Бадертдинова Е.Р. Определение параметров призабойной зоны вертикальной скважины по результатам термогидродинамических исследований // ИФЖ. 2016. Т. 89. № 6. С. 1470.
  4. Duru O., Horne R. Modeling Reservoir Temperature Transients and Reservoir-parameter Estimation Constrained to the Model // SPE Reservoir Eval. Eng. 2010. V. 13. P. 873.
  5. Sui W., Zhu D., Hill A.D., Ehlig-Econodimis C.A. Determining Multilayer Formation Properties from Transient Temperature and Pressure Measurements // SPE-116270. 2008.
  6. Хайруллин М.Х., Шамсиев М.Н., Бадертдинова Е.Р., Абдуллин А.И. Интерпретация результатов термогидродинамических исследований вертикальных скважин, эксплуатирующих многопластовые залежи // ТВТ. 2014. Т. 52. № 5. С. 734.
  7. Wang Z. The Uses of Distributed Temperature Survey (DTS) Data. PhD thesis. Stanford, 2012.
  8. Баренблатт Г.И., Желтов Ю.П., Кочина И.Н. Об основных представлениях теории фильтрации однородных жидкостей в трещиноватых породах // ПММ. 1960. Т. 24. Вып. 5. С. 852.
  9. Афанасьев А.А. Структура температурного фронта при фильтрации в трещиновато-пористой среде // ПММ. 2020. Т. 84. № 1. С. 64.
  10. Cao Wei, Shiqing Cheng, Jiandong She et al. Numerical Study on the Heat Transfer Behavior in Naturally Fractured Reservoirs and Applications for Reservoir Characterization and Geothermal Energy Development // J. Pet. Sci. Eng. 2021. V. 202. 108560.
  11. Vasilyeva M., Babaei M., Chung E.T. et al. Multiscale Modeling of Heat and Mass Transfer in Fractured Media for Enhanced Geothermal Systems Applications // Appl. Math. Modelling. 2019. V. 67. P. 159.
  12. Pruess K., Narasimhan T.N. A Practical Method for Modelling Fluid and Heat Flow in Fractured Porous Media // Soc. Pet. Eng. J. 1985. V. 25. № 1. P. 14.
  13. Warren J.E., Root P.J. The Behavior of Naturally Fractured Reservoirs // Soc. Pet. Eng. J. 1963. V. 3. P. 245.
  14. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М.: Недра, 1993. 413 с.
  15. Эрлагер Р. Гидродинамические исследования скважин. М.–Ижевск: Ин-т комп. иссл., 2014.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (147KB)
3.

Download (88KB)
4.

Download (90KB)

Copyright (c) 2023 М.Н. Шамсиев, М.Х. Хайруллин, П.Е. Морозов, В.Р. Гадильшина, А.И. Абдуллин, А.В. Насыбуллин