Level of tryptophan signaling molecules in children with different dynamics of obesity development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high incidence of obesity in children is an extremely pressing problem in the modern health care system of many countries. There is an increase in the incidence of obesity in children in Russia, which is dangerous not only due to the development of somatic concomitant pathologies, but also to a violation of the social adaptation of children. Without a doubt, the search for early biochemical indicators of stabilization and progress of obesity in older age is very important for the formation of a risk group and timely prevention of the development of obesity and its complications. Our study showed that when assessing the various dynamics of obesity development, it is necessary to take into account the gender of the child, which is ignored in many cases. A decrease in serum serotonin concentrations may be considered as an indicator associated with the stabilization or progression of obesity in girls. Whereas in boys prone to stabilization and/or progression of obesity, a reduced serum level of indole-3-acrylate may act as a predictor marker.

Full Text

Restricted Access

About the authors

O. P. Shatova

Pirogov Russian National Research Medical University; Peoples’s Friendship University of Russia (RUDN University)

Author for correspondence.
Email: shatova.op@gmail.com
Russian Federation, Moscow; Moscow

I. M. Kolesnikova

Pirogov Russian National Research Medical University; National Medical Research Center for Endocrinology

Email: shatova.op@gmail.com
Russian Federation, Moscow; Moscow

E. M. Yagodkina

Pirogov Russian National Research Medical University

Email: shatova.op@gmail.com
Russian Federation, Moscow

S. S. Kaydoshko

Pirogov Russian National Research Medical University

Email: shatova.op@gmail.com
Russian Federation, Moscow

A. M. Gaponov

Research Center for Digital and Translational Biomedicine “Center for Molecular Health”

Email: shatova.op@gmail.com
Russian Federation, Moscow

S. A. Roumiantsev

Pirogov Russian National Research Medical University; National Medical Research Center for Endocrinology

Email: shatova.op@gmail.com
Russian Federation, Moscow; Moscow

A. V. Shestopalova

Pirogov Russian National Research Medical University; National Medical Research Center for Endocrinology

Email: shatova.op@gmail.com
Russian Federation, Moscow; Moscow

References

  1. https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2021.pdf
  2. Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, Herceg-čavrak V, Lopez-Valcarcel BG, Brzeziński M, Lurbe E, Wühl E (2021) Obesity and Cardiometabolic Risk Factors: From Childhood to Adulthood. Nutrients 13: 4176. https://doi.org/10.3390/NU13114176
  3. Leerkes EM, Buehler C, Calkins SD, Shriver LH, Wideman L (2020) Protocol for iGrow (Infant Growth and Development Study): biopsychosocial predictors of childhood obesity risk at 2 years. BMC Public Health 20: 1912. https://doi.org/10.1186/S12889-020-10003-0
  4. Lischka J, Schanzer A, Baumgartner M, de Gier C, Greber-Platzer S, Zeyda M (2022) Tryptophan Metabolism Is Associated with BMI and Adipose Tissue Mass and Linked to Metabolic Disease in Pediatric Obesity. Nutrients 14: 286. https://doi.org/10.3390/NU14020286
  5. Lee EY, Yoon KH (2018) Epidemic obesity in children and adolescents: risk factors and prevention. Front Med 12: 658–666. https://doi.org/10.1007/S11684-018-0640-1
  6. Chong B, Jayabaskaran J, Kong G, Chan YH, Chin YH, Goh R, Kannan S, Ng CH, Loong S, Kueh MTW, Lin C, Anand VV, Lee ECZ, Chew HSJ, Tan DJH, Chan KE, Wang JW, Muthiah M, Dimitriadis GK, Hausenloy DJ, Mehta AJ, Foo R, Lip G, Chan MY, Mamas MA, le Roux CW, Chew NWS (2023) Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. EClinicalMedicine 57: 101850. https://doi.org/10.1016/J.ECLINM.2023.101850
  7. Zhao X, Niu Y, Zhao XL, Ruan HJ, Xiang Y, Wang LY, Feng Y, Tang QY (2023) Associations Between Serum TNF-α, IL-6, hs-CRP and GLMD in Obese Children and Adolescents: A Cross-Sectional Study. Diabetes Metab Syndr Obes 16: 3915–3923. https://doi.org/10.2147/DMSO.S434482
  8. Liaqat H, Parveen A, Kim SY (2022) Neuroprotective Natural Products’ Regulatory Effects on Depression via Gut-Brain Axis Targeting Tryptophan. Nutrients 14: 3270. https://doi.org/10.3390/NU14163270
  9. Shestopalov AV, Shatova OP, Zabolotneva AA, Gaponov AM, Moskaleva NE, Appolonova SA, Makarov VV, Yudin SM, Rumyantsev AG, Roumiantsev SA (2021) Coupling features of intestinal and serum indole pools in obesity. Problems of Biological Medical and Pharmaceutical Chemistry 24: 3–12. https://doi.org/10.29296/25877313-2021-10-01
  10. Shestopalov A V., Shatova OP, Gaponov AM, Moskaleva NE, Appolonova SA, Tutelyan AV, Makarov VV, Yudin SM, Rumyantsev SA (2020) The study of tryptophan metabolite concentrations in blood serum and fecal extracts from obese children. Biomed Khim 66: 494–501. https://doi.org/10.18097/PBMC20206606494
  11. Di Ciaula A, Bonfrate L, Khalil M, Garruti G, Portincasa P (2023) Contribution of the microbiome for better phenotyping of people living with obesity. Rev Endocr Metab Disord 24: 839–870. https://doi.org/10.1007/S11154-023-09798-1
  12. Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, Ferretti E, Migliaccio S, Izzo L, Ritieni A, Grosso M, Formichi C, Dotta F, Frigerio F, Barbiera E, Giusti AM, Ingallina C, Mannina L (2023) New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 15: 640. https://doi.org/10.3390/NU15030640
  13. Kozieł K, Urbanska EM (2023) Kynurenine Pathway in Diabetes Mellitus-Novel Pharmacological Target? Cells 12: 460. https://doi.org/10.3390/CELLS12030460
  14. Hou Y, Li J, Ying S (2023) Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 13: https://doi.org/10.3390/METABO13111166
  15. Shatova OP, Shestopalov AV (2023) Tryptophan Metabolism: A New Look at the Role of Tryptophan Derivatives in the Human Body. Biology Bulletin Reviews 13: 81–91. https://doi.org/10.1134/S2079086423020068
  16. Shestopalov AV, Shatova OP, Karbyshev MS, Gaponov AM, Moskaleva NE, Appolonova SA, Tutelyan AV, Makarov VV, Yudin SM, Roumiantsev SA (2022) “Kynurenine switch” and obesity.Bulletin of Siberian Medicine 20: 103–111. https://doi.org/10.20538/1682-0363-2021-4-103-111
  17. Correa-Burrows P, Rogan J, Blanco E, East P, Lozoff B, Gahagan S, Burrows R (2021) Resolving early obesity leads to a cardiometabolic profile within normal ranges at 23 years old in a two-decade prospective follow-up study. Sci Rep 11: 18927. https://doi.org/10.1038/S41598-021-97683-9
  18. Peterkova VA, Bezlepkina OB, Bolotova NV, Bogova EA, Vasyukova OV, Girsh YV, Kiyaev AV, Kostrova IB, Malievskiy OA, Mikhailova EG, Okorokov PL, Petryaykina EE, Taranushenko TE, Khramova EB (2021) Clinical guidelines “Obesity in children”. Problems of Endocrinology 67: 67–83. https://doi.org/10.14341/probl12802
  19. Bioanalytical Method Validation. Guidance for Industry. September 2013. Revision 1. U.S. Department of Health and Human Services. Food and Drug Administration
  20. Tan KML, Tint MT, Kothandaraman N, Yap F, Godfrey KM, Lee YS, Tan KH, Gluckman PD, Chong YS, Chong MFF, Eriksson JG, Cameron-Smith D (2022) Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children. Int J Obes (Lond) 46:1128–1137. https://doi.org/10.1038/S41366-022-01085-4
  21. Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, Verbanck M, Arredouani A, Marre M, Pigeyre M, Bessede A, Guillemin GJ, Chinetti G, Staels B, Pattou F, Balkau B, Allorge D, Froguel P, Poulain-Godefroy O (2015) The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 23: 2066–2074. https://doi.org/10.1002/OBY.21199
  22. Tan KML, Tint MT, Kothandaraman N, Michael N, Sadananthan SA, Velan SS, Fortier MV, Yap F, Tan KH, Gluckman PD, Chong YS, Chong MFF, Lee YS, Godfrey KM, Eriksson JG, Cameron-Smith D (2022) The Kynurenine Pathway Metabolites in Cord Blood Positively Correlate with Early Childhood Adiposity. J Clin Endocrinol Metab 107: e2464–e2473. https://doi.org/10.1210/CLINEM/DGAC078
  23. Zhang S, Dang Y (2022) Roles of gut microbiota and metabolites in overweight and obesity of children. Front Endocrinol (Lausanne) 13: 994930. https://doi.org/10.3389/FENDO.2022.994930/PDF
  24. Shan S, Qiao Q, Yin R, Zhang L, Shi J, Zhao W, Zhou J, Li Z (2023) Identification of a Novel Strain Lactobacillus Reuteri and Anti-Obesity Effect through Metabolite Indole-3-Carboxaldehyde in Diet-Induced Obese Mice. J Agric Food Chem 7: 3239–3249. https://doi.org/10.1021/ACS.JAFC.2C05764
  25. Misch M, Puthanveetil P (2022) The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 23: 5439. https://doi.org/10.3390/IJMS23105439
  26. Zurita-Cruz JN, Villasís-Keever MA, Manuel-Apolinar L, Damasio-Santana L, Garrido-Magaña E, Rivera-Hernández A de J (2023) Leptin/adiponectin ratio as a prognostic factor for increased weight gain in girls with central precocious puberty. Front Endocrinol (Lausanne) 14: 1101399. https://doi.org/10.3389/FENDO.2023.1101399/PDF
  27. Dicks LMT (2022) Gut Bacteria and Neurotransmitters. Microorganisms 10: 1838. https://doi.org/10.3390/MICROORGANISMS10091838
  28. Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10: 473–486. https://doi.org/10.1038/NRGASTRO.2013.105
  29. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161: 264–276. https://doi.org/10.1016/J.CELL.2015.02.047
  30. Mandić AD, Woting A, Jaenicke T, Sander A, Sabrowski W, Rolle-Kampcyk U, von Bergen M, Blaut M (2019) Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep 9: 1177. https://doi.org/10.1038/S41598-018-38018-Z
  31. Legan TB, Lavoie B, Mawe GM (2022) Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterology and motility 34: e14346. https://doi.org/10.1111/NMO.14346
  32. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9: 392. https://doi.org/10.3389/FNCEL.2015.00392/PDF
  33. Portincasa P, Bonfrate L, Khalil M, De Angelis M, Calabrese FM, D’amato M, Wang DQH, Di Ciaula A (2021) Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 10: 83. https://doi.org/10.3390/BIOMEDICINES10010083
  34. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O’Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ (2017) Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe 22: 25–37.e6. https://doi.org/10.1016/J.CHOM.2017.06.007
  35. Flannigan KL, Nieves KM, Szczepanski HE, Serra A, Lee JW, Alston LA, Ramay H, Mani S, Hirota SA (2023) The Pregnane X Receptor and Indole-3-Propionic Acid Shape the Intestinal Mesenchyme to Restrain Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 15:765–795. https://doi.org/10.1016/J.JCMGH.2022.10.014
  36. Ma X, Idle JR, Gonzalez FJ (2008) The pregnane X receptor: from bench to bedside. Expert Opin Drug Metab Toxicol 4: 895–908. https://doi.org/10.1517/17425255.4.7.895
  37. Barretto SA, Lasserre F, Huillet M, Régnier M, Polizzi A, Lippi Y, Fougerat A, Person E, Bruel S, Bétoulières C, Naylies C, Lukowicz C, Smati S, Guzylack L, Olier M, Théodorou V, Mselli-Lakhal L, Zalko D, Wahli W, Loiseau N, Gamet-Payrastre L, Guillou H, Ellero-Simatos S (2021) The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gutmicrobiota in mice. Microbiome 9: 93. https://doi.org/10.1186/S40168-021-01050-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Indole, serotonin and kynurenine pathways of tryptophan metabolism [4, 8].

Download (421KB)

Copyright (c) 2024 Russian Academy of Sciences