Sorption of Picolinic Acid and Iron(III) by Sulfocationite Dowex 50

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experimental study of the equilibrium distribution of cations in the system of Dowex 50 sulfonic cation exchanger and an aqueous solution of picolinic acid and iron chloride was carried out. A high concentration of iron and picolinic acid complexes was obtained in the Dowex 50 sulfonic cationite phase. The possibility of calculating the equilibrium counterionic composition of Dowex 50 sulfonic cationite from the equilibrium constants of binary ion exchanges and the known composition of the solution is shown. Sulfocationite Dowex 50 is proposed as a container for biologically active preparations based on picolinic acid and Fe3+ cations.

About the authors

G. N. Altshuler

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: altshulerh@gmail.com
Kemerovo, Russia

E. V. Ostapova

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: altshulerh@gmail.com
Kemerovo, Russia

S. Yu. Lyrschikov

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: altshulerh@gmail.com
Kemerovo, Russia

N. S. Zakharov

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences

Email: altshulerh@gmail.com
Kemerovo, Russia

O. G. Altshuler

Federal Research Center of Coal and Coal-Chemistry, Siberian Branch, Russian Academy of Sciences; Kemerovo State University

Author for correspondence.
Email: altshulerh@gmail.com
Kemerovo, Russia; Kemerovo, Russia

References

  1. Солдатенков А.Т., Колядина Н.М., Шендрик И.В. Основы органической химии лекарственных веществ. М.: Химия, 2001. 188 с.
  2. Sinthpoom N., Prachayasittikul V., Prachayasittikul S. et al. // Eur. Food Res. Tech. 2014. V. 240. № 1. P. 1. https://doi.org/10.1007/s00217-014-2354-1
  3. Grant R.S., Coggan S.E., Smythe G.A. // Int. J. Tryptophan Res. 2009. V. 2. P. 71. https://doi.org/10.4137/IJTR.S2469
  4. Datta D., Uslu H., Kumar S. // Chemical Engineering Research and Design. 2015. V. 95. P. 105. https://doi.org/10.1016/j.cherd.2015.01.013
  5. Sahin K., Onderci M., Sahin N. et al. // Anim. Feed Sci. Technol. 2006. V. 129(1–2). P. 39. https://doi.org/10.1016/j.anifeedsci.2005.11.009
  6. Ciubotariu D., Nechifor M., Dimitriu G. // J. Trace Elem. Med. Biol. 2018. V. 50. P. 676. https://doi.org/10.1016/j.jtemb.2018.06.025
  7. Aguilar F., Charrondiere U.R., Dusemund B. et al. // The European Food Safety Authority. 2009. V. 1113. P. 1. https://doi.org/10.2903/j.efsa.2009.1113
  8. Sabatier M., Grathwohl D., Beaumont M. et al. // European J. of Nutrition. 2020. V. 59. P. 1371. https://doi.org/10.1007/s00394-019-01989-4
  9. Bryszewska M.A., Laghi L., Zannoni A. et al. // Nutrients. 2017. V. 9. № 3. P. 272. https://doi.org/10.3390/nu9030272
  10. Altshuler H., Ostapova E., Altshuler O. et al. // ADMET and DMPK. 2019. V. 7. № 1. P. 76. https://doi.org/10.5599/admet.626
  11. Альтшулер Г.Н., Шкуренко Г.Ю., Некрасов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. № 7. С. 1062. [Altshuler G.N., Shkurenko G.Yu., Nekrasov V.N. et al. // Rus. J. of Phys.Chem. A. 2022. V. 96. № 7. P. 1535.] https://doi.org/10.1134/S0036024422070032
  12. Альтшулер Г.Н., Некрасов В.Н., Альтшулер О.Г. // Там же. 2022. Т. 96. № 8. С. 1176–1179. [Altshuler G.N., Nekrasov V.N., Altshuler O.G. // Ibid. 2022. V. 96. № 8. P. 1724.] https://doi.org/10.1134/S0036024422080027
  13. Альтшулер Г.Н., Остапова Е.В., Альтшулер О.Г. // Теоретические основы химической технологии. 2022. Т. 56. № 1. С. 128. [Altshuler G.N., Ostapova E.V., Altshuler O.G. // Theoretical Foundations of Chemical Engineering. 2022. V. 56. № 1. P. 124.] https://doi.org/10.1134/S0040579521060014
  14. Pepper K.W., Reichenberg D., Hale D.K. // J. Chem. Soc. 1952. V. 10. P. 3129. https://doi.org/10.1039/JR9520003129
  15. HySS 2009. Hyperquad Simulation and Speciation, Protonic Software, Leeds (UK), Universita di Firenze, Firenze (Italy), 2009. http: // www.hyperquad.co.uk/hyss.htm
  16. IUPAC Stability Constants Database; http: // www.acadsoft.co.uk/scdbase/scdbase.htm.
  17. Никольский Б.П. Справочник химика. М.: Медиа, 2012. Т. 3. 490 с.
  18. El-Dessouky M.A., El-Ezaby M.S., Shuaib N.M. // Inorg. Chim. Acta. 1980. 46:7–14. https://doi.org/10.1016/S0020-1693(00)84161-4
  19. Никольский Б.П. Справочник химика. М.: Книга по Требованию, 2013. Т. 4. 910 с.
  20. Остапова Е.В., Лырщиков С.Ю., Альтшулер Г.Н. // ЖПХ. 2022. Т. 95. № 8. С. 65. [Ostapova E.V., Lyrshchikov S.Yu., Al’tshuler G.N. // Rus. J. of Applied Chemistry. 2022. V. 95. P. 1223. https: // doi.org/10.1134/S1070427222080195]
  21. Cnockaert V., Maes K., Bellemans I. et al. // J. of Non-Crystalline Solids. 2020. V. 536. P. 120002. https://doi.org/10.1016/j.jnoncrysol.2020.120002
  22. Смит А. Прикладная ИК-спектроскопия: основы, техника, аналитическое применение. М.: Мир, 1982. С. 301–308.
  23. Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. С. 51.
  24. Marsh J.L., Wayman A.E., Smiddy N.M. et al. // Langmuir. 2017. V. 33. № 46. P. 13224. https://doi.org/10.1021/acs.langmuir.7b03338
  25. Koczon P., Dobrowolski J.Cz., Lewandowski W. et al. // J. of Molecular Structure. 2003. V. 655. № 1. P. 89. https://doi.org/10.1016/S0022-2860(03)00247-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (44KB)
3.

Download (83KB)
4.

Download (41KB)
5.

Download (42KB)

Copyright (c) 2023 Г.Н. Альтшулер, Е.В. Остапова, С.Ю. Лырщиков, Н.С. Захаров, О.Г. Альтшулер