Ab Initio Reconstruction of Interatomic Potential for the Ground Electronic State of CO Molecule

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy of the ground state of the carbon monoxide molecule has been calculated by multi-configuration methods of self-consistent field (MC-SCF), configuration interaction (MR-CI+Q), and the averaged coupled pair functional (MR-ACPF) on a detailed grid and in a wide range of internuclear distances 0.1 < R < 17.0 Å. The scalar relativistic correction is systematically taken into account using the effective second-order Douglas–Krol–Hess (DKH) Hamiltonian. Quantum electrodynamic (QED) correction to mass invariant potential has been estimated for the first time using a model one-electron operator, which has been built independently for each atom. The calculations have been carried out using the family of correlation-consistent aug-cc-pwCVnZ-DK (n = 3, 4, 5) bases for both atoms followed by extrapolation to the complete basis set (CBS) in the framework of the empirical three-point scheme. The resulting potential has been found to be very close to its semi-empirical counterpart near the equilibrium position and at the dissociation limit. It is expected that the most significant clarification ab initio potential corresponds to the intermediate region 2.0 < R < 4.5 Å, where reliable experimental data are not yet available.

About the authors

V. V. Meshkov

Faculty of Chemistry, Moscow State University

Email: avstol@phys.chem.msu.ru
Moscow, Russia

E. A. Pazyuk

Faculty of Chemistry, Moscow State University

Email: avstol@phys.chem.msu.ru
Moscow, Russia

A. V. Stolyarov

Faculty of Chemistry, Moscow State University

Email: avstol@phys.chem.msu.ru
Moscow, Russia

D. P. Usov

Department of Physics, St. Petersburg State University

Email: avstol@phys.chem.msu.ru
St. Petersburg, Russia

A. M. Ryzhkov

Department of Physics, St. Petersburg State University; B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”

Email: avstol@phys.chem.msu.ru
St. Petersburg, Russia; 188300, Gatchina, Leningrad oblast, Russia

I. M. Savelyev

Department of Physics, St. Petersburg State University

Email: avstol@phys.chem.msu.ru
St. Petersburg, Russia

Yu. S. Kozhedub

Department of Physics, St. Petersburg State University

Email: avstol@phys.chem.msu.ru
St. Petersburg, Russia

N. S. Mosyagin

B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”

Email: avstol@phys.chem.msu.ru
188300, Gatchina, Leningrad oblast, Russia

V. M. Shabaev

Department of Physics, St. Petersburg State University; B.P. Konstantinov Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”

Author for correspondence.
Email: avstol@phys.chem.msu.ru
St. Petersburg, Russia; 188300, Gatchina, Leningrad oblast, Russia

References

  1. Combes F. // Annu. Rev. Astron. Astrophys. 1991. T. 29. C. 195.
  2. Meshkov V.V., Ermilov A.Yu., Stolyarov A.V. et al. // J. of Quantitative Spectroscopy and Radiative Transfer. 2022. V. 280. № April. P. 108090.
  3. Medvedev E.S., Meshkov V.V., Stolyarov A.V., Gordon I.E. // Journal of Chemical Physics. 2015. V. 143. № 15. P. 154301.
  4. Gordon I.E., Rothman L.S., Hargreaves R.J. et al. // J. of Quantitative Spectroscopy and Radiative Transfer. 2022. V. 277. P. 107949.
  5. Meshkov V.V., Stolyarov A.V., Ermilov A.Yu. et al. // Ibid. 2018. V. 217. P. 262.
  6. Пазюк Е.А., Пупышев В.И., Зайцевский А.В., Столяров А.В. // Журн. физ. химии. 2019. Т. 93. С. 1461.
  7. Ushakov V.G., Meshkov V.V., Ermilov A.Yu. et al. // Physical Chemistry Chemical Physics. 2020. V. 22. № 21. P. 12058.
  8. Коновалова Е.А., Демидов Ю.А., Столяров А.В. // Оптика и спектроскопия. 2018. Т. 125. № 4. С. 451.
  9. Pyykko P., Dyall K.G., Csaszar A.G. et al. // Phys. Rev. A. 2001. T. 63. № 2. C. 024502.
  10. Werner H., Knowles P., Knizia G., Manby F. et al. M-OLPRO, version 2010.1, a package of ab initio programs. 2010; http://www.molpro.net.
  11. Bussery B., Rosenkrantz M.E., Konowalow D.D., Aubert-Frécon M. // Chem. Phys. 1989. V. 134. P. 7.
  12. Rosenkrantz M.E., Bohr J.E., Konowalow D.D. // Theor. Chim. Acta. 1992. V. 82. P. 153.
  13. Peterson K.A., Dunning T.H. // J. Chem. Phys. 2002. V. 117. P. 10548.
  14. Shabaev V.M., Tupitsyn I.I., Yerokhin V.A. // Phys. Rev. A. 2013. T. 88. № 1. C. 012513.
  15. Shabaev V.M., Tupitsyn I.I., Yerokhin V.A. // Comp. Phys. Communications. 2015. T. 189. C. 175.
  16. Titov A.V., Mosyagin N.S. // Intern. J. of Quantum Chemistry. 1999. T. 71. № 5. C. 359.
  17. Saue T. // J. Chem. Phys. 2020. T. 152. № 20. C. 204104.
  18. Oleynichenko A.V., Zaitsevskii A., Mosyagin N.S. et al. // Symmetry. 2023. T. 15. № 1. C. 197.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (108KB)
3.

Download (96KB)
4.

Download (64KB)
5.

Download (83KB)
6.

Download (37KB)

Copyright (c) 2023 В.В. Мешков, Е.А. Пазюк, А.В. Столяров, Д.П. Усов, А.М. Рыжков, И.М. Савельев, Ю.С. Кожедуб, Н.С. Мосягин, В.М. Шабаев