Investigation of the Spectra of Electronic Transitions in Small Clusters of the Pigment Yellow 3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electronic absorption spectra were calculated in the visible region for clusters of the pigment Yellow 3 that comprise one, two, and four molecules. The geometry was optimized by the PBEh-3c and B3LYP-D4/def2-SVPD methods. The results obtained by the B3LYP-D4/def2-SVPD method correlate best with the experimental data. The spectral characteristics were calculated by the TD-DFT and sTD-DFT methods with the PBE0 functional and the def2-SVPD basis set. By analyzing the natural transition orbitals (NTOs) and changing the electron density during the formation of excited states of the studied clusters, it was shown that the main contribution to the spectral lines in the visible range is made by the density transfer from the aromatic rings to the nitro group and the conjugated bond system in the center of the molecule. In this case, for the crystalline state of matter, all excited states are delocalized, and the main contribution to the intermolecular transfer of the electron density is made by the formation of excitons.

About the authors

A. A. Degtyarev

Tambov State Technical University

Email: ad.dycost@gmail.com
392000, Tambov, Russia

D. P. Rostova

Tambov State Technical University

Email: ad.dycost@gmail.com
392000, Tambov, Russia

T. P. D’yachkova

Tambov State Technical University

Email: ad.dycost@gmail.com
392000, Tambov, Russia

A. V. Trishina

Tambov State Technical University

Author for correspondence.
Email: ad.dycost@gmail.com
392000, Tambov, Russia

References

  1. Лаптев Н.Г., Богословский А.М. Химия красителей. М.: Химия, 1970. 424 с.
  2. Whitaker A. // Zeitschrift für Kristallographie – Crystalline Materials. 1983. V. 163. P. 19. https://doi.org/10.1524/zkri.1983.163.14.19
  3. Венкатараман К. Химия синтетических красителей. Т. 3. Л.: Химия, 1974. 464 с.
  4. Венкатараман К. Химия синтетических красителей. Т. 4. Л.: Химия, 1975. 488 с.
  5. Ибраев Н.Х., Селиверстова Е.В., Артюхов В.Я. // Изв. вузов. Физика. 2014. Т. 57. № 9. С. 9.
  6. Whitaker A. // J. of the Society of Dyers and Colourists. 1983. V. 99. P. 121.
  7. Grimme S., Brandenburg J.G., Bannwarth C., Hansen A. // J. of Chemical Physics. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
  8. Lee C., Yang W., Parr R.G. // Phys. Rev B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  9. Caldeweyher E., Ehlert S., Hansen A. // J. of Chemical Physics. 2019. V. 150. № 15. P. 154122. https://doi.org/10.1063/1.5090222
  10. Rappoport D., Furche F. // Ibid. 2010. V. 133. № 13. P. 134105-11. https://doi.org/10.1063/1.3484283
  11. Runge E., Gross E.K.U. // Physical Review Letters. 1984. V. 52. № 12. P. 997. https://doi.org/10.1103/physrevlett.52.997
  12. Bannwarth C., Grimme S. // Computational and Theoretical Chemistry. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
  13. De Wergifosse M., Seibert J., Grimme S. // The J. of Chemical Physics. 2020. V. 153. № 8. P. 084116. https://doi.org/10.1063/5.0020543
  14. Perdew J.B., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982. https://doi.org/10.1063/1.472933
  15. Jacquemin D., Perpète E.A., Scuseria G.E. et al. // J. of Chemical Theory and Computation. 2008. V. 4. № 1. P. 123. https://doi.org/10.1021/ct700187z
  16. Jacquemin D., Planchat A., Adamo C., Mennucci B. // J.of Chemical Theory and Computation. 2012. V. 8. № 7. P. 2359. https://doi.org/10.1021/ct300326f
  17. Jacquemin D., Perpète E.A., Ciofini I., Adamo C. // Theoretical Chemistry Accounts. 2008. V. 120. № 4–6. P. 405. https://doi.org/10.1007/s00214-008-0424-9
  18. Han J., Liu X., Sun C. et al. // RSC Advances. 2018. V. 8. № 52. P. 29589. https://doi.org/10.1039/c8ra05812a
  19. Tsai H.-H.G., Sun H.-L.S., Tan C.-J. // The J. of Physical Chemistry A. 2010. V. 114. № 12. P. 4065. https://doi.org/10.1021/jp100022y
  20. Mahamiya V., Bhattacharyya P., Shukla A. // ACS Omega. 2022. V. 7. P. 48261. https://doi.org/10.1021/acsomega.2c06373
  21. Rappoport D., Furche F. // The Journal of Chemical Physics. 2010. V. 133. № 13. P. 134105. 10.1063/1.3484283' target='_blank'>https://doi.org/doi: 10.1063/1.3484283.
  22. Mera-Adasme R., Xu W.-H., Sundholm D., Mendizabal F. // Physical Chemistry Chemical Physics. 2016. V. 18. № 40. P. 27877. 10.1039/c6cp04627d' target='_blank'>https://doi.org/doi: 10.1039/c6cp04627d.
  23. Neese F. // WIREs Comput Mol Sci. 2017. V. 8. № 1. P. e1327. https://doi.org/10.1002/wcms.1327
  24. Allouche A.R. // J. of Computational Chemistry. 2011. V. 32. P. 174. https://doi.org/10.1002/jcc.21600
  25. Berraud-Pache R., Neese F., Bistoni G., Izsák R. // J. Chem. Theory Comput. 2020. V. 16. № 1. P. 564. https://doi.org/10.1021/acs.jctc.9b00559
  26. Martin R.L. // The J. of Chemical Physics. 2003. V. 118. № 11. P. 4775. https://doi.org/10.1063/1.1558471

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (15KB)
3.

Download (259KB)
4.

Download (241KB)
5.

Download (299KB)
6.

Download (497KB)
7.

Download (407KB)
8.

Download (212KB)
9.

Download (5KB)
10.

Download (311KB)
11.

Download (40KB)
12.

Download (88KB)
13.

Download (140KB)
14.

Download (109KB)

Copyright (c) 2023 А.А. Дегтярев, Д.П. Ростова, Т.П. Дьячкова, А.В. Тришина