GeCn Coordination Polyhedra in the Crystal Structures
- Authors: Karasev M.O.1, Fomina V.A.1, Karaseva I.N.2, Pushkin D.V.1
-
Affiliations:
- Samara National Research University
- Samara State Technical University
- Issue: Vol 97, No 9 (2023)
- Pages: 1278-1289
- Section: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- Submitted: 26.02.2025
- Published: 01.09.2023
- URL: https://permmedjournal.ru/0044-4537/article/view/668666
- DOI: https://doi.org/10.31857/S0044453723090078
- EDN: https://elibrary.ru/XJLJOT
- ID: 668666
Cite item
Abstract
A crystal-chemical analysis has been performed for germanium compounds whose structure includes GeCn coordination polyhedra using the intersecting sectors method and Voronoi–Dirichlet polyhedra. In the structures of organogermanium compounds, the germanium atoms have coordination numbers of 2–6 and 10 with respect to the carbon atoms. The influence of the coordination number and oxidation state of germanium atoms on the main characteristics of their Voronoi–Dirichlet polyhedra (VDP) was considered. The existence of a single linear dependence of the solid angles of VDP faces corresponding to valence and nonvalence Ge–C and Ge⋅⋅⋅C contacts on the corresponding internuclear distances was established. A stereo effect of the lone pair of electrons of Ge(II) atoms in the GeCn complexes (n = 2–6 or 10) found; it manifests itself as a displacement of the nuclei of Ge(II) atoms from the centers of gravity of their VDPs (0.15–0.58 Å) and as asymmetry of the coordination sphere. The deviation of the GeC3 complexes from planar geometry in the crystal structures was shown to be directly proportional to the displacement of the nuclei of Ge atoms from the centers of gravity of their VDP.
About the authors
M. O. Karasev
Samara National Research University
Email: maxkarasev@inbox.ru
443086, Samara, Russia
V. A. Fomina
Samara National Research University
Email: maxkarasev@inbox.ru
443100, Samara, Russia
I. N. Karaseva
Samara State Technical University
Email: maxkarasev@inbox.ru
443100, Samara, Russia
D. V. Pushkin
Samara National Research University
Author for correspondence.
Email: maxkarasev@inbox.ru
443086, Samara, Russia
References
- Эльшенбройх К. Металлоорганическая химия. М.: БИНОМ. Лаборатория знаний. 2011. С. 746.
- Ludwiczak M., Bayda M., Dutkiewicz M. et al. // Organometallics. 2016. V. 35. № 15. P. 2454. https://doi.org/10.1021/acs.organomet.6b00336
- Cao H., Brettell-Adams I.A., Qu F. et al. // Ibid. 2017. V. 36. № 14. P. 2565. https://doi.org/10.1021/acs.organomet.7b00135
- Ohshita J., Sugino M., Ooyama Y. et al. // Ibid. 2019. V. 38. № 7. P. 1606. https://doi.org/10.1021/acs.organomet.9b00036
- Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre, Cambridge, 2022).
- Karasev M.O., Karaseva I.N., Pushkin D.V. // Russ. J. Inorg. Chem. 2018. V. 63. №. 3. P. 324. [Карасев М.О., Карасева И.Н., Пушкин Д.В. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 307].https://doi.org/10.1134/S0036023618030105
- Karasev M.O., Karaseva I.N., Pushkin D.V. // Ibid. 2018. V. 63. № 8. P. 1032. [Карасев М.О., Карасева И.Н., Пушкин Д.В. // Там же. 2018. Т. 63. № 8. С. 996].https://doi.org/10.1134/S0036023618080107
- Karasev M.O., Karaseva I.N., Pushkin D.V. // Ibid. 2019. V. 64. № 7. P. 870. [Карасев М.О., Карасева И.Н., Пушкин Д.В. // Там же. 2019. Т. 64. № 7. С. 714].https://doi.org/10.1134/S003602361907009X
- Karasev M.O., Karaseva I.N., Pushkin D.V. // Ibid. 2021. V. 66. № 11. P. 1669. [Карасев М.О., Карасева И.Н., Пушкин Д.В. // Там же. 2021. Т. 66. № 11. С. 1647].https://doi.org/10.1134/S0036023621110115
- Blatov V.A., Shevchenko A.P., Serezhkin V.N. // Russ. J. Coord. Chem. 1999. Т. 25. № 7. С. 453. [Блатов В.А., Шевченко А.П., Сережкин В.Н. // Координац. химия. 1999. Т. 25. № 7. С. 483.]
- Вайнштейн Б.К., Фридкин В.М., Инденмоб В.Л. Современная кристаллография в четырех томах. Т. 1. М.: Наука, 1979. С. 161.
- Blatova O.A., Blatov V.A., Serezhkin V.N. // Russ. J. Coord.Chem. 2000. V. 26. № 12. P. 847. [Блатова О.А., Блатов В.А., Сережкин В.Н. // Координац. химия. 2000. Т. 26. № 12. С. 903.]
- Kira M., Iwamoto T., Ichinihe M. et al. // Chemisry Letters. 1999. V. 28. № 3. P. 263. https://doi.org/10.1246/cl.1999.263
- Inorganic crystal structure database. Gmelin-institut fur Anorganische Chemie & FIC Karlsruhe. 2022.
- Mizuhata Y., Fujimori S., Sasamori T. et al. // Angewandte Chemie. 2017. V. 56. № 16. P. 4588. https://doi.org/10.1002/anie.201700801
- Kawachi A., Machida K., Yamamoto Y. // Chemical Communication. 2010. V. 46. № 11. P. 1890. https://doi.org/10.1039/b923606f
- Freeman W.P., Tilley T.D., Liable-Sands L.M. et al. // J. of the American Chemical Society. 1996. V. 118. № 43. P. 10457. https://doi.org/10.1021/ja962103g
- Schneider J., Krebs K.M., Freitag S. // Chemistry-A European Journal. 2016. V. 22. № 28. P. 9812. https://doi.org/10.1002/chem.201601224
- Dong Z.W., Schmidtmann M., Muller T. // Ibid. 2019. V. 25. № 46. P. 10858. https://doi.org/10.1002/chem.201902238
- Dong Z.W., Albers L., Schmidtmann M. et al. // Chemistry A European Journal. 2019. V. 25. № 4. P. 1098. https://doi.org/10.1002/chem.201805258
- Brown Z., Vasko P., Erickson J.D. et al. // J. of the American Chemical Society. 2013. V. 135. № 16. P. 6257. https://doi.org/doi.org/10.1021/ja4003553.
- Ruddy A.J., Rupar P.A., Bladek K.J. et al. // Organometallics. 2010. V. 29. № 6. P. 1362. https://doi.org/10.1021/om900977g
- Watanabe T., Kasai Y., Tobita H. // Chemistry A European Journal. 2019. V. 25. № 59. P. 13491. https://doi.org/10.1002/chem.201903069
- Summerscales O.T., Fettinger J.C., Power P.P. // Journal of the American Chemical Society. 2011. V. 133. № 31. P. 11960. https://doi.org/10.1021/ja205816d
- Lai T.Y., Gullett K.L., Chen C.Y. et al. // Organometallics. 2019. V. 38. № 7. P. 1421. https://doi.org/10.1021/acs.organomet.9b00077
- Winter J.G., Portius P., Kociok-Kohn G. et al. // Ibid. 1998. V. 17. № 19. P. 4176. https://doi.org/10.1021/om980425i
- Kohl F.X., Dickbreder R., Jutzi P. et al. // J. of Organometallic Chemistry. 1986. V. 309. № 3. P. C43. https://doi.org/10.1016/S0022-328X(00)99641-4
- Rouzaud J., Joudat M., Castel A. et al. // Ibid. 2002. V. 651. № 1–2. P. 44. https://doi.org/10.1016/S0022-328X(02)01221-4
- Jutzi P., Hampel B., Hursthouse M.B. et al. // Organometallics. 1986. V. 5. № 10. P. 1944. https://doi.org/10.1021/om00141a003
- Jutzi P., Becker A., Leue C. et al. // Ibid. 1991. V. 10. № 11. P. 3838. https://doi.org/10.1021/om00057a012
- Constantine S.P., Cox H., Hitchcock P.B. et al. // Ibid. 2000. V. 19. № 3. P. 317. https://doi.org/10.1021/om990884z
- Drost C., Griebel J., Kirmse R. et al. // Angewandte Chemie, International Edition. 2009. V. 48. № 11. P. 1962. https://doi.org/10.1002/anie.200805328
- Sugahara T., Guo J.D., Hashizume D. et al. // J. of the American Chemical Society. 2019. V. 141. № 6. P. 2263. https://doi.org/10.1021/jacs.9b00129
- Lazraq M., Escudie J., Couret C. et al. // Angewandte Chemie, International Edition. 1988. V. 27. № 6. P. 828. https://doi.org/10.1002/anie.198808281
- Meiners F., Saak W., Weidenbruch M. // Organometallics. 2000. V. 19. № 15. P. 2835. https://doi.org/10.1021/om000284w
- Sturmann M., Saak W., Weidenbruch M. et al. // Heteroatom Chemistry. 1999. V. 10. № 7. P. 554. https://doi.org/10.1002/(SICI)1098-1071(1999)10:7<554::AID-HC7>3.0.CO;2-X
- Sasamori T., Inamura K., Hoshino W. et al. // Organometallics. 2006. V. 25. № 15. P. 3533. https://doi.org/10.1021/om060371+
- Nakata N., Takeda N., Tokitoh N. // Journal of the American Chemical Society. 2002. V. 124. № 24. P. 6914. https://doi.org/10.1021/ja0262941
- Mizuhata Y., Inamura K., Tokitoh N. // Canadian J. of Chemistry. 2014. V. 92. № 6. P. 441. https://doi.org/10.1139/cjc-2013-0501
- Kaiya C., Suzuki K., Yamashita M. // Organometallics. 2019. V. 38. № 3. P. 610. https://doi.org/10.1021/acs.organomet.8b00938
- Tajima T., Sasaki T., Sasamori T. et al. // Applied Organometallic Chemistry. 2005. V. 19. № 4. P. 570. https://doi.org/10.1002/aoc.810
- Smallwood Z.M., Davis M.F., Grant Hill J. et al. // Inorganic Chemistry. 2019. V. 58. № 7. P. 4583. https://doi.org/10.1021/acs.inorgchem.9b00150
- Корольков Д.В., Скоробогатов Г.А. Теоретическая химия. С-Пб.: Изд-во СПбГУ, 2004. С. 503.
- Serezhkin V.N., Buslaev Yu.A. // Russ. J. Inorg. Chem. 1997. V. 42. № 7. P. 1064 [Сережкин В.Н., Буслаев Ю.А. // Журн. неорган. хим. 1997. Т. 42. № 7. С. 1180].
- Пушкин Д.В., Сережкин В.Н., Карасев М.О., Кравченко Э.А. // ЖНХ. 2010. Т. 55. № 4. С. 576–582.
- Сережкин В.Н., Карасев М.О., Сережкина Л.Б. // Радиохимия. 2013. Т. 55. № 2. С. 97.
- Блатов В.А., Полькин В.А., Сережкин В.Н. // Кристаллография. 1994. Т. 39. № 3. С. 457.
- Сережкин В.Н., Веревкин А.Г., Пушкин Д.В., Сережкина Л.Б. // Координац. химия. 2008. Т. 34. № 3. С. 230–237.
- Сережкин В.Н., Сережкина Л.Б., Пушкин Д.В. // ЖСХ. 2009. Т. 50. Приложение. С. S18–S25.
- Егоров-Тисменко Ю.К. Кристаллография и кристаллохимия. КДУ. М.: 2005. С. 592.
Supplementary files
