Self-Diffusion of Ferulic and Sinapic Acids in the Binary Carbon Tetrachloride–Acetone-d6 System

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

1H NMR with a pulsed magnetic field gradient method are used to measure the coefficients of self-diffusion of ferulic and sinapic acids in binary carbon tetrachloride–acetone-d6 solvent at temperatures of 278 and 298 K. Data show that the acids’ coefficients of self-diffusion grow along with the concentration of acetone-d6 and temperature. It is shown that the effective hydrodynamic radii of acids do not depend on the composition of the binary solvent within the experimental error. In light of molecular association, this behavior can be explained by the competition between two processes: acid–acetone heteroassociation and acid–acid self-association.

作者简介

V. Golubev

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: vag@isc-ras.ru
153045, Ivanovo, Russia

D. Gurina

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: vag@isc-ras.ru
153045, Ivanovo, Russia

参考

  1. Sun Y., Li Sh., Song H. et al. // Natural Product Research. 2006. V. 20 (9). P. 835. https://doi.org/10.1080/14786410500462579
  2. Ju H.S., Li X.J., Zhao B.L. et al. // Acta Pharmacol. Sin. 1990. V. 11. P. 466.
  3. Meng S., Lu Z. J., Zhang Z.N. et al. // Chin. Pharmacol. Bull. 1994. V. 10. P. 439.
  4. Kikuzaki H., Hisamoto M., Hirose K. et al. // J. Agricultural and Food Chemistry. 2002. V. 50. P. 2161. https://doi.org/10.1021/jf011348w
  5. Kumar N., Pruthi V. // Biotechnol. Rep. 2014. V. 4. P. 86.
  6. El-Seedi H.R., El-Said A.M.A., Khalifa S.A.M. et al. // J. Agric. Food Chem. 2012. V. 60. P. 10877. https://doi.org/10.1021/jf301807g
  7. Puupponen-Pimia R., Nohynek L., Alakomi H.-L. et al. // Appl. Microbiol. Biotechnol. 2005. V. 67. P. 8. https://doi.org/10.1007/s00253-004-1817-x
  8. Lay H.L., Shih I.J., Yeh C.H. et al. // J. Food Drug Anal. 2000. V. 8. P. 304.
  9. Pereira C.G., Meireles M.A.A. // Food Bioprocess Technol. 2010 V. 3. P. 340. https://doi.org/10.1007/s11947-009-0263-2
  10. Yamamoto M., Iwai Y., Nakajima T. et al. // J. Phys. Chem. A. 1999. V. 103. P. 3525. https://doi.org/10.1021/jp984604p
  11. Ke J., Jin Sh., Han B. et al. // J. Supercrit. Fluids. 1997. V. 11. P. 53. https://doi.org/10.1016/S0896-8446(97)00029-6
  12. Gohres J.L., Shukla C.L., Popov A.V. et al. // J. Phys. Chem. B. 2008. V. 112. P. 14993. https://doi.org/10.1021/jp806135s
  13. Gurina D.L., Antipova M.L., Odintsova E.G. et al. // J. Supercrit. Fluids. 2018. V. 139. P. 19. https://doi.org/10.1016/j.supflu.2018.05.004
  14. Gurina D.L., Antipova M.L., Odintsova E.G. et al. // Ibid. 2017. V. 126. P. 47. https://doi.org/10.1016/j.supflu.2017.02.008
  15. Gurina D.L., Odintsova E.G., Golubev V.A. et al. // Ibid. 2017. V. 124. P. 50.https://doi.org/10.1016/j.supflu.2017.01.012
  16. Golubev V.A., Gurina D.L. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 447. https://doi.org/10.1134/S0036024419030075
  17. Price W.S. NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press: Cambridge, 2009. 393 p.
  18. Hardt A.P., Anderson D.K., Rathbun R. et al. // J. Phys. Chem. 1959. V. 63. P. 2059. https://doi.org/10.1021/j150582a021
  19. Golubev V.A., Gurina D.L. // J. Mol. Liq. 2019. V. 283. P. 1. https://doi.org/10.1016/j.molliq.2019.03.038
  20. Vignes A. // Ind. Eng. Chem. Fundam. 1966. V. 5. P. 189. https://doi.org/10.1021/i160018a007
  21. Golubev V.A. // J. Mol. Liq. 2020. V. 305. P. 112813. https://doi.org/10.1016/j.molliq.2020.112813
  22. Monakhova Yu.B., Pozharov M.V., Zakharova T.V. et al. // J. Solution. Chem. 2014. V. 43. P. 1963. https://doi.org/10.1007/s10953-014-0249-1
  23. Macchioni A., Ciancaleoni G., Zuccaccia C., Zuccaccia D. // Chem. Soc. Rev. 2008. V. 37. P. 479. https://doi.org/10.1039/B615067P
  24. Крестов Г.А., Афанасьев В.Н., Ефремова Л.С. Физико-химические свойства бинарных растворителей. Л.: Химия, 1988. 688 с.
  25. Holz M., Mao X., Seiferling D. // J. Chem. Phys. 1996. V. 104. P. 669. https://doi.org/10.1063/1.470863
  26. Golubev V.A., Gurina D.L., Kumeev R.S. // Russ. J. Phys. Chem. A. 2018. V. 92. P. 75. https://doi.org/10.1134/S0036024418010090
  27. Golubev V.A., Kumeev R.S., Gurina D.L. et al. // J. Mol. Liq. 2017. V. 241. P. 922. https://doi.org/10.1016/j.molliq.2017.06.102
  28. Golubev V.A. // Ibid. 2018. V. 264. P. 314. https://doi.org/10.1016/j.molliq.2018.05.083
  29. Golubev V.A., Gurina D.L. // Ibid. 2021. V. 326. P. 115230. https://doi.org/10.1016/j.molliq.2020.115230
  30. Cabrita E.J., Berger S. // Magn. Reson. Chem. 2001. V. 39. P. 142. https://doi.org/10.1002/mrc.917

补充文件

附件文件
动作
1. JATS XML
2.

下载 (196KB)
3.

下载 (38KB)
4.

下载 (33KB)
5.

下载 (61KB)
6.

下载 (35KB)

版权所有 © В.А. Голубев, Д.Л. Гурина, 2023