Влияние состава водно-диметилсульфоксидного растворителя на устойчивость комплексов никеля(II) с криптандом [2.2.2]
- Authors: Исаева В.А.1, Католикова A.С.1, Погодина Е.И.1, Куранова Н.Н.1
-
Affiliations:
- Ивановский государственный химико-технологический университет
- Issue: Vol 98, No 8 (2024)
- Pages: 8-15
- Section: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Submitted: 27.02.2025
- Published: 22.08.2024
- URL: https://permmedjournal.ru/0044-4537/article/view/668922
- DOI: https://doi.org/10.31857/S0044453724080025
- EDN: https://elibrary.ru/PKZHKY
- ID: 668922
Cite item
Abstract
Методом потенциометрического титрования при Т = 298 К определены константы устойчивости комплексов никеля(II) с криптандом [2.2.2] в водно-диметилсульфоксидных растворах с переменным содержанием органического сорастворителя. Установлено, что устойчивость моноядерного криптата никеля(II) уменьшается с повышением концентрации диметилсульфоксида в растворе, устойчивость биядерного комплекса возрастает. В области высоких концентраций диметилсульфоксида наблюдается также рост устойчивости протонированного криптата никеля(II). С использованием литературных данных рассчитаны значения энергии Гиббса переноса иона никеля(II) из воды в водно-диметилсульфоксидный растворитель. Дана оценка вкладов пересольватации реагентов в смесях вода – диметилсульфоксид в изменение устойчивости комплексов никеля(II) с криптандом[2.2.2].
Full Text

About the authors
В. А. Исаева
Ивановский государственный химико-технологический университет
Author for correspondence.
Email: kvol1969@gmail.com
Russian Federation, Иваново
A. С. Католикова
Ивановский государственный химико-технологический университет
Email: kvol1969@gmail.com
Russian Federation, Иваново
Е. И. Погодина
Ивановский государственный химико-технологический университет
Email: kvol1969@gmail.com
Russian Federation, Иваново
Н. Н. Куранова
Ивановский государственный химико-технологический университет
Email: kvol1969@gmail.com
Russian Federation, Иваново
References
- Huh D.N., Ciccone S.R., Bekoe S., et al. // Angew. Chem. Int. Ed. 2020. V. 59. № 37. P. 16141. https://doi.org/10.1002/anie.202006393
- Jenkins T.F., Woen D.H., Mohanam L.N., et al. // Organometallics. 2018. V. 37. № 2. P. 3863. https://doi.org/10.1021/acs.organomet.8b00557
- Jokel J., Nyben F., Siegmund D., Apfel U.-P. // Dalton Trans. 2021. V. 50. P. 14602. doi: 10.1039/d1dt02075g
- Dalessandro E.V., Pliego J.J.R. // Mol. Syst. Des. Eng. 2020. V. 5. № 9. Р. 1513. doi: 10.1039/d0me00112k
- Verma A., Tomar K., Bharadwaj P.K. // Inorg. Chem. 2019. V. 58. Р. 1003. doi: 10.1021/acs.inorgchem.8b03015
- Tyszka-Gumkowska A., Jurczak J. // J. Org. Chem. 2020. V. 85. № 2. P. 1308. https://doi.org/10.1021/acs.joc.9b02985
- Kirschner S., Peters M., Yuan K., et al. // Chem. Sci. 2022. V. 13. P. 2661. doi: 10.1039/d2sc00303a
- Leone L., Guarnieri L., Martinelli J., et al. // Chem. A Europ. J. 2021. V. 27. № 46. P. 11811. https://doi.org/10.1002/chem.202101701
- McDonagh A.W., McNeil B.L., Patrick B.O., Ramogida C.F. // Inorg. Chem. 2021. V. 60. № 13. Р. 10030. doi: 10.1021/acs.inorgchem.1c01274
- Bailey M.D., Jin G-X., Carniato F., et al. // Chem. A Europ. J. 2021. V. 27. № 9. P. 3114. https://doi.org/10.1002/chem.202004450
- Tapia L., Alfonso I., Sola J. // Org. Biomolec. Chem. 2021. V. 19. № 44. P. 9527. https://doi.org/10.1039/d1ob01737c
- Bento M.A., Realista S., Viana A.S., et al. // Sustainability. 2021. V. 13. P. 4158. https://doi.org/10.3390/su13084158
- Li A., Zhai H., Li J., He Q. // Chem. Lett. 2020. V. 49. P. 1125. doi: 10.1246/cl.200409
- Salman A.D., Juzsakova T., Jalhoom M.G., et al. // Materials. 2020. V. 13. P. 5727. doi: 10.3390/ma13245727
- Thang P.C., Jungfer M.R., Abram U. // New J. Chem. 2020. V. 44. № 9. Р. 3672. doi: 10.1039/c9nj06420f
- Poe T.N., Beltran-Leiva M.J., Celis-Barros C., et al. // Inorg. Chem. 2021. V. 60. № 11. Р. 7815. https://doi.org/10.1021/acs.inorgchem.1c00300
- Zabrodina G.S., Katkova M.A., Rumyantcev R.V., et al. // Macroheterocycles. 2022. Т. 15. № 2. С. 109. doi: 10.6060/mhc224316z
- Amaud-Neu F., Spiess B., Schwing-Weill M. J. // Helv. Chim. Acta. 1977. V. 60. № 8. P. 2633. https://doi.org/10.1002/hlca.19770600815
- Buschman H-J., Cleve E., Schollmever E. // J. Coord. Chem. 1997. V. 42. P. 127. https://doi.org/10.1080/00958979708045285
- Spiess B., Arnaud-Neu F., Schwing-Weill M. J. // Helv. Chim. Acta. 1979. V. 62. № 5. P. 1531. https://doi.org/10.1002/hlca.19790620518
- Исаева В.А., Кипятков К.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2021. Т. 95. № 5. С. 758. doi: 10.31857/S0044453721050162 (Isaeva V.A., Kipyatkov K.A., Gamov G.A., Sharnin V.A. // Russ. J. Phys. Chem. A. 2021. V. 95. № 5. Р. 968. doi: 10.1134/S0036024421050162)
- Бородин В.А., Козловский Е.В., Васильев В.П. // Журн. неорган. химии. 1986. Т. 31. № 1. С. 10.
- Bosch E., Fonrodona G., Rafols C., Roses M. // Anal. Chim. Acta. 1997. V. 349. № 1–3. Р. 367. https://doi.org/10.1016/S0003-2670(97)00191-8
- Исаева В.А., Гамов Г.А., Шарнин В.А. // Журн. физ. химии. 2022. Т. 96. № 5. С. 687. doi: 10.31857/S0044453722050132 (Isaeva V.A., Gamov G.A., Sharnin V.A. // Russ. J. Phys. Chem. 2022. V. 96. № 5. P. 1004. doi: 10.1134/S0036024422050132
- Meshkov A.N., Gamov G.A. // Talanta. 2019. V. 198. P. 200. https://doi.org/10.1016/j.talanta.2019.01.107
- Исаева В.А., Погодина Е.И., Католикова А.С., Шарнин В.А. // Журн. физ. химии. 2023. Т. 97. № 4. С. 505. doi: 10.31857/S0044453723040155 (Isaeva V.A., Pogodina E.I., Katolikova A.S., Sharnin V.A. // Russ. J. Phys. Chem. A. 2023. V. 97. № 4. P. 651. doi: 10.1134/S0036024423040143)
- Нищенков А.В., Шарнин В.А., Шорманов В.А., Крестов Г.А. // Координац. химия. 1990. Т. 16. № 9. С. 1264.
- Исаева В.А., Шарнин В.А., Граждан К.В., Кипятков К.А. // Журн. физ. химии. 2021. Т. 95. № 7. С. 1027. doi: 10.31857/S0044453721060169 (Isaeva V.A., Sharnin V.A., Grazhdan K.V., Kipyatkov K.A. // Russ. J. Phys. Chem. A. 2021. V. 95. № 7. Р. 1350. doi: 10.1134/S0036024421060169)
- Gamov G., Dushina S., Sharnin V., Zavalishin V. // Cent. Eur. J. Chem. 2013. V. 11. № 12. P. 1959. doi: 10.2478/s11532-013-0325-1
- Исаева В.А., Гамов Г.А., Католикова А.С., Погодина Е.И. // Журн. общ. химии. 2023. Т. 93. № 1. С. 126. doi: 10.31857/S0044460X23010146 (Isaeva V.A., Gamov G.A., Katolikova A.S., Pogodina E.I. // Russ. J. Gener. Chem. 2023. V. 93. № 1. Р. 56. doi: 10.1134/S1070363223010085
- Amaud-Neu F., Spiess B., Schwing-Weill M. J. // J. Am. Chem. Soc. 1982. V. 104. № 21. P. 5641. https://doi.org/10.1021/ja00385a014
- Bessiere J., Lejaille M.F. // Anal. Lett. 1979. V. 12. № 7. P. 753. doi: 10.1080/00032717908059756
- Marcus Y. // Rev. Anal. Chem. 2004. V. 23. № 4. P. 269. https://doi.org/10.1515/REVAC.2004.23.4.269
- Сhantoni M.K., Kolthoff I.M. // J. Solut. Shem. 1985. V. 14. № 1. P. 1. https://link.springer.com/article/10.1007/BF00646725
- Cox B.G., Garsia-Rosas J., Schneider H. // J. Am. Chem. Soc. 1981. V. 103. № 6. P. 1384. https://doi.org/10.1021/ja00396a016
- Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. V. 100. № 3. P. 819. https://doi.org/10.1021/cr980144k
- Исаева В.А., Молчанов А.С., Шишкин М.В., Шарнин В.А. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 629. doi: 10.31857/S0044457X22050087 (Isaeva V.A., Molchanov A.S., Shishkin M.V., Sharnin V.A. // Russ. J. Inorgan. Chem. 2022. V. 67. № 5. P. 699. doi: 10.1134/S0036023622050084)
- Горбунов А.О., Цырульников Н.А., Тихомирова А.А., и др. // Журн. общ. химии. 2016. Т. 86. № 4. С. 581. (Gorbunov A.O., Tsyrul’nikov N.A., Tikhomirova A.A., et al. // Russ. J. Gen. Chem. 2016. V. 86. № 4. Р. 771. doi: 10.1134/S1070363216040022)
- Рошковский Г.В., Овчинникова Р.А. // Журн. прикл. химии. 1982. Т. 55. № 8. С. 1858.
- Marcus Y. // Chem. Rev. 2007. V. 107. № 9. P. 3880. https://doi.org/10.1021/cr068045r
- Стенина Е.В., Свиридова Л.Н. // Конденсирован. среды и межфазн. границы. 2005. Т. 7. № 2. С. 161.
- Невский А.В., Шорманов В.А., Крестов Г.А. // Журн. физ. химии. 1984. T. 58. № 1. C. 97.
- Шарнин В.А., Усачева Т.Р., Кузьмина И.А., и др. Комплексообразование в неводных средах: сольватационный подход к описанию роли растворителя /Под. ред. В.А. Шарнина. М.: ЛЕНАНД, 2019. 304 с.
- Abraham M.H., De Namor A.F.D., Schulz R.A. // J. Chem. Soc., Farad. Trans. 1. 1980. V. 76. P. 869. https://doi.org/10.1039/F19807600869
- Чанкина Т.И., Парфенюк В.И. // Электрохимия. 2010. Т. 46. № 9. С. 1058.
- Невский А.В., Шорманов В.А., Крестов Г.А. // Координац. химия. 1983. Т. 9. № 3. С. 391.
- Holba V. // Chem. Papers. 1999. V. 53. № 4. Р. 227.
- El-Subruiti G.M. // J. Sol. Chem. 2002. V. 31. № 5. Р. 415. https://doi.org/10.1023/A:1015863416229
- Нищенков А.В., Шарнин В.А., Шорманов В.А., Крестов Г.А. // Журн. физ. химии. 1988. Т. 62. № 9. С. 2568.
- Cox B.G. Oxford University Press, 2013. 160 p. https://doi.org/10.1093/acprof: oso/9780199670512.001.0001
- Wells C.F. // J. Chem. Farad. Trans. 1. 1981. V. 77. P. 1515. https://doi.org/10.1039/F19817701515
Supplementary files
