Фазовые равновесия в системе Na+, K+// Cl–, NO3– – H2O вблизи температур кипения. II. Моделирование взаимной системы

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

С помощью набора параметров, представленного в первой части работы, промоделированы фазовые равновесия во взаимной системе Na+, K+// Cl, NO3 – H2O в диапазоне температур 373–573 К. В соответствии с результатами расчета, в этой системе существует область устойчивости жидкости, кипение которой происходит без образования третьей фазы (осадка). Прослежено изменение температуры кипения для отдельных выбранных валовых составов системы при постепенном испарении из нее воды. Показано, что при экспериментальном определении температур кипения или активности воды для насыщенных растворов, образованных растворением солей с разноименными катионами и анионами, следует учитывать тот факт, что состав таких растворов будет изменяться при любых изменениях валовых концентраций образующих систему солей, если в осадке появляется соль, отличная от использованных при смешении.

Full Text

Restricted Access

About the authors

М. Н. Мамонтов

Московский государственный университет им. М. В. Ломоносова

Author for correspondence.
Email: mmn@td.chem.msu.ru

химический факультет

Russian Federation, Москва

С. В. Курдакова

Московский государственный университет им. М. В. Ломоносова

Email: mmn@td.chem.msu.ru

химический факультет

Russian Federation, Москва

И. А. Успенская

Московский государственный университет им. М. В. Ломоносова

Email: mmn@td.chem.msu.ru

химический факультет

Russian Federation, Москва

References

  1. Wang P., Anderko A., Young R. D. // Fluid Ph. Eq. 2002. V.203. P. 141. doi: 10.1016/s0378-3812(02)00178-4
  2. Gruszkiewicz M. S., Palmer D. A., Springer R. D., et al. // J. Sol. Chem. 2007. V.36. P. 723. doi: 10.1007/s10953-007-9145-2
  3. Kattner U. // Tecnologia em Metalurgia, Materiais e Mineracao. 2016. [online], doi: 10.4322/2176-1523.1059
  4. Hiroshi Ohtani. The CALPHAD Method. Springer Handbook of Materials Measurement Methods, 2006. ISBN: 978-3-540-20785-6
  5. Cohen-Adad R., Ben Hassen-Chehimi D., Zayani L.&I., et al. // CALPHAD. 1997. V. 21. № 4. P. 521
  6. Voigt W. // Pure Appl. Chem. 2001. V. 73. № 5. P. 831 doi: 10.1351/pac200173050831
  7. Laliberte M., Cooper W. E. // J. Chem. Eng. Data. 2004. V. 49. № 5. P 1141. doi: 10.1021/je0498659
  8. Carroll S., Craig L., Wolery T. J. // Geochem. Trans. 2005. V. 6. № 2. P. 19. doi: 10.1186/1467-4866-6-19.
  9. Rard J. A. // Report UCRL-TR-207054 (Lawrence Livermore National Laboratory, Livermore, California), 2004.
  10. Rard J. A. Report UCRL-TR-217415 (Lawrence Livermore National Laboratory, Livermore, California), 2005.
  11. Rard J. A., Staggs K. J., Day S. Dan, Carroll S. A. // J. Solution Chem. 2006. V.35. P. 1187. doi: 10.1007/s10953-006-9049-6
  12. Linke W. F. Solubilities, Inorganic and Metal-Organic Compounds, fourth ed. V. II. American Chemical Society, Washington, DC. 1965

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculated liquidus isotherms in the Na+, K+//Cl–, NO3– –H2O system at saturated vapor pressure (equilibrium L+S1+S2); T = 385(a), 460 K(b). The molar fractions of potassium ions (x(K+)) and nitrate ions x(NO3-) are deposited along the axes relative to the total number of cations (K+, Na+) and anions (Cl–, NO3–), respectively. The saturated vapor pressure H2O (bar) is indicated along the lines. The blue numbers along the “AF” line show the weight percentage of H2O in solution (w). The crystallization fields are indicated by the names of the corresponding salts.

Download (67KB)
3. Fig. 2. Boundaries of three-phase equilibria L+S1+S2 of the mutual system Na+, K+//Cl–, NO3– – H2O at PH2O = 1 bar. The molar fractions of potassium ions (x(K+)) and nitrate ions x(NO3-) are deposited along the axes relative to the total number of cations (K+, Na+) and anions (Cl–, NO3–), respectively; w(H2O) is the water content in wt. %. Dotted line It corresponds to the L+S equilibrium for the salt I – salt II –water ternary systems (for more information, see Table 2).

Download (234KB)
4. 3. Projections of lines of liquid compositions (L) in equilibrium with two solid phases (L+S1+S2) at PH2O = 1 bar onto the plane of compositions of anhydrous salts. The corresponding temperatures are indicated along the lines. The dotted lines represent the compositions of the NaCl–KNO3–H2O, KCl–NaNO3–H2O subsystems (for more information, see Table 2). The designation of the compositions is similar to Figs. 1 and 2.

Download (42KB)
5. 4. Projections of the surface of the liquidus of the mutual system onto the plane of anhydrous salts (a) at PH2O = 1 bar (solid lines L+S1+S2) and projections of isothermal sections (dotted lines). The isotherms are constructed for the intervals T = 395-420 K and 470-490 K. The square symbols correspond to the gross compositions of the system from the table. 3. Isotherms for the range 420-470 K on an enlarged scale (b). The shaded area corresponds to the gross compositions of mixtures that do not precipitate at boiling in the range T = 373-573 K.

Download (83KB)
6. Fig. 5. The results of estimating the density of a boiling solution of composition X6 (see Table. 3) when removing water in the system, Na+, K+//Cl–, NO3– – H2O. The model parameters from [7] were used in the calculations.

Download (14KB)
7. Fig. 6. Boiling point of saturated solutions of the mutual system Na+, K+//Cl–, NO3– – H2O of gross composition X1 and X3 (see Tables 3 and Fig. 4a) at different water contents in the system (wt. %). The numbering of the segments corresponds to different phase regions.

Download (33KB)
8. 7. Dependences of water activity in saturated aqueous solutions of a mixture of salts of the following systems: H2O–NaNO3–KNO3 at 363 K (a), H2O–NaCl–NaNO3 at 383 K (b), H2O–NaCl–KNO3 at 393 K (c). The mole fraction of salt (x) is plotted along the abscissa axis, calculated as the ratio of the number of moles of a given salt to the total amount of salts in the system. Symbols are experimental data [8], lines are the calculation of the present. work (the gross molalities of salts corresponding to a solid line are 1.5 times less than in the case of a dotted line, see the comments in the text).

Download (72KB)
9. 8. Boiling points of saturated aqueous solutions in the H2O – NaCl – KNO3 system at atmospheric pressure. The mole fraction of NaCl salt (x) is plotted along the abscissa axis, calculated as the ratio of the number of moles of a given salt to the total amount of salts in the system. The symbols are experimental data [9], the lines are calculated in the present. (the gross molalities of salts in samples No. 2, 3 are about 2.3 and 7.2 times lower than in No. 1, respectively).

Download (29KB)
10. 9. Calculated compositions of saturated aqueous solutions for systems formed by substances NaCl, KNO3, H2O (a) and KCl, NaNO3, H2O (b) at a vapor pressure of H2O 1 bar. Salt concentrations are expressed in molality scale, temperature – in K (numbers at the dots). The letter designations AB, BC, CD correspond to the following sediment composition {KNO3+ KCl + NaCl} (a) and {NaNO3, NaCl, KCl} (b).

Download (37KB)

Copyright (c) 2024 Russian Academy of Sciences