Термодинамика сольватации иона серебра(i) в неводных растворителях

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Потенциометрическим методом определены энергии Гиббса переноса иона серебра(I) из метанола (MeOH) в диметилсульфоксид (DMSO) и из этанола (EtOH) в N,N-диметилформамид (DMF). Обобщены и проанализированы собственные и литературные данные по термодинамическим характеристикам переноса Ag+ из спиртов (S1) в апротонные (S2) растворители. Установлено, что замена амфотерных растворителей на апротонные приводит к существенному усилению сольватации иона серебра(I). Преобладающим вкладом в энергию Гиббса переноса иона при смене растворителя (S1→S2) является энтальпийный вклад. Упрочнение сольватокомплексов “Ag+ – растворитель” при замене S1 на S2 обусловлено, преимущественно, усилением электронодонорно-акцепторных взаимодействий вследствие снижения кислотности растворителей.

Full Text

Restricted Access

About the authors

И. A. Кузьмина

Ивановский государственный химико-технологический университет

Email: mariia.a.kovanova@gmail.com
Russian Federation, Иваново

M. A. Кованова

Ивановский государственный химико-технологический университет

Author for correspondence.
Email: mariia.a.kovanova@gmail.com
Russian Federation, Иваново

References

  1. Marcus Y. Ions in solution and their solvation. N.Y.: John Wiley & Sons, 2015. 312 p.
  2. Seo D.M., Borodin O., Han S.-D., et al. // J. Electrochem. Soc. 2012. V. 159. A553. doi: 10.1149/2.jes112264
  3. Andreev M., de Pablo J.J., Chremos A., Douglas J.F. // J. Phys. Chem. B. 2018. V. 122. № 14. P. 4029. doi: 10.1021/acs.jpcb.8b00518
  4. Мураева О.А., Панаетова Т.Д. // Фундаментальные исследования. 2018. № 4. С. 21.
  5. Шарнин В.А., Усачева Т.Р., Кузьмина И.А., и др. Комплексообразование в неводных средах: Сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
  6. Кузьмина И.А., Шарнин В.А., Голиков А.Н. // Журн. физ. химии. 2010. Т. 84. № 6. С. 1055.
  7. Kuz’mina I.А., Volkova M.A., Kuz’mina K.I., et al. // J. Mol. Liq. 2019. V. 276. P. 78. doi: 10.1016/j.molliq.2018.11.097
  8. Subramanian S., Kalidas C. // Electrochim. Acta. 1984. V. 29. № 6. P. 753.
  9. Ямпольский А.М. Электролитическое осаждение благородных и редких металлов. Л.: Машиностроение, 1971. 128 с.
  10. Кузьмина И.А., Шорманов В.А. //Изв. вузов. Химия и хим. технология. 2000. Т. 43. № 4. С. 71.
  11. Пухлов А.Е., Репкин Г.И., Шарнин В.А., Шорманов В.А. // Журн. неорган. химии. 2002. Т. 47. № 8. С. 1385.
  12. Кузьмина И.А., Шарнин В.А., Голиков А.Н. // Журн. общ. химии. 2009. Т. 79. № 12. С. 1965.
  13. Семенов И.М., Репкин Г.И., Шарнин В.А. // Журн. неорган. химии. 2013. Т. 58. № 12. С. 1681.
  14. Скуг Д., Уэст Д. Основы аналитической химии. Т. 1. М.: Мир, 1979. 480 с.
  15. Дерффель К. Статистика в аналитической химии. М.: Мир, 1994. 268 с.
  16. Gritzner G. // Pure Appl. Chem. 1988. V. 60. № 12. P. 1743.
  17. Stroka J., Schneider H. // Pol. J. Chem. 1980. V. 54. № 9. P. 1805.
  18. Мошорин Г.В., Репкин Г.И., Шарнин В.А. // Журн. физ. химии. 2006. Т. 80. № 2. С. 215.
  19. Кузьмина И.А., Усачева Т.Р., Шарнин В.А. //Там же. 2012. Т. 86. № 1. С. 56.
  20. Hörzenberger F., Gritzner G. // J. Chem. Soc. Faraday Trans. 1993. V. 89. № 19. P. 3557.
  21. Rajendran G., Kalidas C. // J. Chem. Eng. Data. 1986. V. 31. № 2. P. 226.
  22. Ichikawa T., Yoshida H., Li Anson S.V., Kevan L. // J. Amer. Chem. Soc. 1984. V. 106. № 16. P. 4329.
  23. Tsutsui Y., Sugimoto K., Wasada H., Inada Y., Funahashiet S. // J. Phys. Chem. A. 1997. V. 101. № 15. P. 2900.
  24. Gill D.S., Chauhan M.S. // Zeitschrift für Physikalische Chemie Neue Folge. 1984. V. 140. P. 139.
  25. Ozutsumi K., Kitakaze A., Iinomi M., Ohtaki H. // J. Mol. Liquids. 1997. V. 73–74. P. 385.
  26. Díaz-Moreno S., Muñoz-Páez A., Sánchez Marcos E. // J. Phys. Chem. B. 2000. V. 104. № 49. P. 11794.
  27. Stålhandske C.M.V., Stålhandske C.I., Persson I., et al. // Inorg. Chem. 2001. V. 40. N26. P. 6684.
  28. Persson I., Nilsson K.B. // Inorg. Chem. 2006. V. 45. № 18. P. 7428.
  29. Ng K.-M., Li W.-K., Wo S.-K., et al. // Phys. Chem. Chem. Phys. 2004. V. 6. P. 144. doi: 10.1039/B308798K
  30. Пятницкий И.В. Аналитическая химия серебра. М.: Наука, 1975. 261 с.
  31. МcPartlin M., Masson R. // ChemComm. 1967. V. 11. P. 545.
  32. Björk N-O., Cassel A. // Acta Chem. Scand. 1976. V. 30A. № 4. P. 235.
  33. Romanov V., Siu C.-K., Verkerk U.H., et al. // J. Phys. Chem. A. 2008. V. 112. № 43. P. 10912.
  34. Texter J., Hastreiter J.J., Hall J.L. // J. Phys. Chem. 1983. V. 87. № 23. P. 4690.
  35. El Aribi H., Shoeib T., Ling Y., et al. // J. Phys. Chem. A. 2002. V. 106. N12. P. 2908.
  36. Фиалков Ю.Я. Не только в воде. Л.: Химия, 1989. 88 с.
  37. Marcus Y. // J. Phys. Chem. 1987. V.91. N16. P. 4422.
  38. Кузьмина И.А., Шорманов В.А. // Изв. вузов. Химия и хим. технология. 2000. Т. 43. № 5. С. 138.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences