Saturated vapor pressures and enthalpies of vaporization of malic acid esters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The saturated vapor pressures of malic acid diesters and linear С15 alcohols are determined using the transpiration method in the temperature range of 303–369 K. The enthalpies of vaporization of esters at 298.2 K are determined on the basis of the obtained data. Correlations of the enthalpies of vaporization from Kovats indices and number of carbon atoms are obtained. The contributions of the hydroxyl group and intermolecular hydrogen bonds to are estimated. The author’s QSPR method for calculating the values of the enthalpies of vaporization of esters of hydroxy acids is modified.

Full Text

Restricted Access

About the authors

Yu. F. Yamshchikova

Samara State Technical University

Email: kinterm@samgtu.ru
Russian Federation, Samara

S. V. Portnova

Samara State Technical University

Email: kinterm@samgtu.ru
Russian Federation, Samara

E. L. Krasnykh

Samara State Technical University

Author for correspondence.
Email: kinterm@samgtu.ru
Russian Federation, Samara

References

  1. Vinoth Kumar R., Pakshirajan K., Pugazhenthi G. Malic and Succinic Acid, in: Platf. Chem. Biorefinery, Elsevier, 2016. Р. 159. https://doi.org/10.1016/B978-0-12-802980-0.00009-2
  2. Martínez-Zepeda D.L., Meza-González B., Álvarez-Hernández M.L. et al. // Dyes Pigments. 2021. V. 188 P. 109239. https://doi.org/10.1016/j.dyepig.2021.109239
  3. Li Z.-J., Hong P.-H., Da Y.-Y. et al. // Metab. Eng. 2018. V. 48. Р. 25. https://doi.org/10.1016/j.ymben.2018.05.010
  4. Lee J.A., Ahn J.H., Lee S.Y. Organic Acids: Succinic and Malic Acids, in: Compr. Biotechnol., Elsevier, 2019. Р. 172. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
  5. Kaminský J., Horáčková F., Biačková N. et al. // J. Phys. Chem. B. 2021. V. 125. Р. 11350. https://doi.org/10.1021/acs.jpcb.1c05480
  6. Kuz’mina N.S., Prokhorova A.A., Portnova S.V., Krasnykh E.L. // Polym. Sci. Ser. B. 2022. V. 64. Р. 636. https://doi.org/10.1134/S156009042270052X
  7. Li Y., Miao Y., Yang L. et al. // Chem. Eng. J. 2023. V. 455. P. 140572. https://doi.org/10.1016/j.cej.2022.140572
  8. Yang R., Wang B., Li M. et al. // Ind. Crops Prod. 2019. V. 136. Р. 121. https://doi.org/10.1016/j.indcrop.2019.04.073
  9. Ljubimova J.Y., Fujita M., Ljubimov A.V. et al. // Nanomed. 2008. V. 3. Р. 247. https://doi.org/10.2217/17435889.3.2.247
  10. Loyer P., Cammas-Marion S. // J. Drug Target. 2014. V. 22. Р. 556. https://doi.org/10.3109/1061186X.2014.936871
  11. Nguyen H.V.D., De Vries R., Stoyanov S.D. // ACS Sustainable Chem. Eng. 2020. V. 8. Р. 14166. https://doi.org/10.1021/acssuschemeng.0c04982
  12. Yan Y., An H., Liu Y. et al. // Int. J. Biol. Macromol. 2023. V. 242. P. 125056. https://doi.org/10.1016/j.ijbiomac.2023.125056
  13. Xi Y., Fan F., Zhang X. // Green Carbon. 2023. V. 1. Р. 118. https://doi.org/10.1016/j.greenca.2023.10.005
  14. Jiang Y., Ye X., Zheng T. et al. // Chin. J. Chem. Eng. 2021. V. 30. Р. 105. https://doi.org/10.1016/j.cjche.2020.10.017
  15. Werpy T., Petersen G. Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas, 2004. 77 p. https://doi.org/10.2172/15008859
  16. Kövilein A., Kubisch C., Cai L., Ochsenreither K. // J. Chem. Technol. Biotechnol. 2020. V. 95. Р. 513. https://doi.org/10.1002/jctb.6269
  17. Liu J., Xie Z., Shin H. et al. // J. Biotechnol. 2017. V. 253. Р. 1. https://doi.org/10.1016/j.jbiotec.2017.05.011
  18. Dai Z., Zhou H., Zhang S. et al. // Bioresour. Technol. 2018. V. 258. Р. 345. https://doi.org/10.1016/j.biortech.2018.03.001
  19. Su C.-Y., Yu C.-C., Chien I.-L., Ward J.D. // Ind. Eng. Chem. Res. 2013. V. 52. Р. 11070. https://doi.org/10.1021/ie303192x
  20. Li Q.-Z., Jiang X.-L., Feng X.-J. et al. // J. Microbiol. Biotechnol. 2016. V. 26. Р. 1. https://doi.org/10.4014/jmb.1505.05049
  21. Stephenson R.M., Malanowski S. Handbook of the Thermodynamics of Organic Compounds, Springer Netherlands, Dordrecht, 1987. https://doi.org/10.1007/978-94-009-3173-2
  22. Emel’yanenko V.N., Yermalayeu A.V., Portnova S.V. et al. // J. Chem. Thermodyn. 2019. V. 128. Р. 55–67. https://doi.org/10.1016/j.jct.2018.07.029
  23. Portnova S.V., Yamshchikova Y.F., Krasnykh E.L. et al. // J. Chem. Eng. Data. 2020. V. 65. Р. 2566–2577. https://doi.org/10.1021/acs.jced.9b01195
  24. Portnova S.V., Yamshchikova Yu.F., Krasnykh E.L. // Russ. J. Phys. Chem. A. 2019. V. 93. Р. 577–583. https://doi.org/10.1134/S0036024419020213
  25. Krasnykh E.L., Portnova S.V. // J. Struct. Chem. 2017. V. 58. Р. 706. https://doi.org/10.1134/S0022476617040096
  26. Krasnykh E.L., Portnova S.V. // Ibid. 2016. V. 57. Р. 437. https://doi.org/10.1134/S0022476616030033
  27. Verevkin S.P., Sazonova A.Yu., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. Р. 89–103. https://doi.org/10.1021/je500784s
  28. Portnova S.V., Kuzmina N.S., Yamshchikova Y.F., Krasnykh E.L. // Ibid. 2022. V. 67. Р. 2323. https://doi.org/10.1021/acs.jced.2c00267
  29. Lipp S.V., Krasnykh E.L., Verevkin S.P. // J. Chem. Eng. Data. 2011. V. 56. Р. 800. https://doi.org/10.1021/je100231g
  30. Portnova S.V., Krasnykh E.L., Levanova S.V. // Russ. J. Phys. Chem. A. 2016. V. 90. Р. 990. https://doi.org/10.1134/S0036024416050253
  31. Verevkin S.P., Kozlova S.A., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2006. V. 51. Р. 1896. https://doi.org/10.1021/je0602418
  32. Verevkin S.P. // J. Chem. Eng. Data. 2017. V. 52. Р. 301. https://doi.org/10.1021/je060419q
  33. Roganov G.N., Pisarev P.N., Emel’yanenko V.N., Verevkin S.P. // J. Chem. Eng. Data. 2005. V. 50. Р. 1114. https://doi.org/10.1021/je049561m
  34. Linstrom P. // NIST Standard Reference Database 1997. V. 69. https://doi.org/10.18434/T4D303

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of malic acid esters.

Download (56KB)
3. Fig. 2. Comparison of saturated vapor pressures for dimethylmalate: • - given work; ○ - [21].

Download (80KB)
4. Fig. 3. Comparison of saturated vapor pressures for diethylmalate: • - the present work; ○ - [21].

Download (67KB)
5. Fig. 4. Dependences of DvapHo values (298.15 K) on the number of carbon atoms of the alcohol moiety.

Download (56KB)
6. Fig. 5. Location of substituents relative to the -OH-group in the molecules of alkyl glycolates, alkyl lactates and dialkylmalates.

Download (55KB)

Copyright (c) 2025 Russian Academy of Sciences