Thermodynamics of sorption and retention patterns of halogen adamantanes on cyclodextrin-containing cyclobond sorbent under HPLC conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimentally, under HPLC conditions, the thermodynamic characteristics of sorption (retention factors, heats and entropy factors of sorption) of various chlorine, bromine and iodine derivatives of adamantanes from water-methanol eluent on sorbents octyl silica gel (SiO2-C8) and b-CD-octyl silica gel (CYCLOBOND) are determined for the first time. It is found that sorption of halogen adamantanes on these sorbents has a different mechanism, viz. distributive on SiO2-C8 and macrocyclic on CYCLOBOND. The isomers of halogen adamantanes on the studied sorbents differ in the retention order under the same elution conditions. High structural selectivity of the CYCLOBOND sorbent for separation of position isomers and stereoisomers of halogen adamantanes is shown. The values of separation factors of position isomers increase with the growth of van der Waals radii of halogen atoms. It is hypothesized that halogen adamantanes, for which it is difficult to form inner-sphere complexes with b-CD fragments, can form outer-sphere complexes with exocyclic OH-groups of b-CD, realizing the sorption mechanism similar to the hydrophilic chromatography variant.

Full Text

Restricted Access

About the authors

S. N. Yashkin

Samara State Technical University

Author for correspondence.
Email: snyashkin@mail.ru
Russian Federation, Samara, 443100

A. V. Bazilin

Samara State Technical University

Email: snyashkin@mail.ru
Russian Federation, Samara, 443100

E. V. Ryzhikhina

Samara State Technical University

Email: snyashkin@mail.ru
Russian Federation, Samara, 443100

D. A. Svetlov

Samara Region Testing Laboratory of the “Center for Laboratory Analysis and Technical Measurements in the Volga Federal District”

Email: snyashkin@mail.ru
Russian Federation, Samara, 443093

References

  1. Багрий Е.И. Адамантаны: получение, свойства, применение. М.: Наука, 1989. 264 с.
  2. Шокова Э.А., Ковалев В.В. // Журн. орган. химии. 2012. Т. 48. № 8. С. 1013. https://doi.org/10.1134/S1070428012080015
  3. Гируц М.В., Гордадзе Г.Н. Химия и геохимия углеводородов алмазоподобного строения. М.: Недра, 2017. 222 с.
  4. Морозов И.С., Петров В.И., Сергеева С.А. Фармакология адамантанов. Волгоград: Волгоградская медицинская академия, 2001. 320 с.
  5. Diamondoids: Synthesis, Properties, and Applications / Eds. S. Stauss, K. Terashima. Pan Stanford Publishing Pte. Ltd., 2017. 241 p.
  6. Solovova N.V., Yashkin S.N., Danilin A.A. // Russ. J. Phys. Chem. 2004. V. 78, Suppl. 1. S. 182.
  7. Яшкин С.Н., Агеева Ю.А. // Журн. физ. химии. 2014. Т. 88. № 4. С. 704. https://doi.org/10.1134/S0036024414040311
  8. Яшкин С.Н., Яшкина Е.А., Светлов Д.А. и др. // Изв. РАН. Сер. хим. 2013. Т. 62. № 5. С. 1287. https://doi.org/10.1007/s11172-013-0178-y
  9. Cserháti T. Cyclodextrins in chromatography. Cambridge: Royal Society of Chemistry, 2003. 157 p.
  10. Rüdiger V., Eliseev A., Simova S., et al. // J. Chem. Soc., Perkin Trans 2. 1996. № 10. С. 2119. https://doi.org/10.1039/P29960002119
  11. Voskuhl J., Waller M., Bandaru S., et al. // Org. Biomol. Chem. 2012. V. 10. № 23. С. 4524. https://doi.org/10.1039/C2OB06915F
  12. Kellett K., Kantonen S.A., Duggan B.M., et al. // J. Solution Chem. 2018. V. 47. № 10. С. 1597. https://doi.org/10.1007/s10953-018-0769-1
  13. Schönbeck C., Holm R. // J. Phys. Chem. B. 2019. V. 123. № 31. С. 6686. https://doi.org/10.1021/acs.jpcb.9b03393
  14. Яшкин С.Н., Агеева Ю.А. // Журн. физ. химии. 2013. Т. 87. № 11. С. 1953. https://doi.org/10.1134/S0036024413110241
  15. Базилин А.В., Яшкина Е.А., Яшкин С.Н. // Изв. РАН. Сер. хим. 2016. Т. 65. № 1. С. 103. https://doi.org/10.1007/s11172-016-1271-9
  16. Яшкин С.Н., Базилин А.В., Яшкина Е.А. // Журн. физ. химии. 2016. Т. 52. № 6. С. 593. https://doi.org/10.1134/S2070205116020325
  17. CYCLOBOND Handbook: A guide to using cyclodextrin bonded phases for chiral LC separations (sigmaaldrich.com).
  18. SUPELCOSIL™ LC-8 HPLC Column | Sigma-Aldrich (sigmaaldrich.com).
  19. Яшкин С.Н., Яшкина Е.А., Светлов Д.А. и др. // Изв. РАН. Сер. хим. 2020. Т. 69. № 5. С. 909. https://doi.org/10.1007/s11172-020-2848-x
  20. Шатц В.Д., Сахартова О.В. Высокоэффективная жидкостная хроматография: основы теории, методология, применение в лекарственной химии. Рига: Зинатне, 1988. С. 85.
  21. Kaliszan R. Quantitative Structure-Chromatographic Retention Relationships. New York: John Wiley & Sons, 1987. 303 p.
  22. Vailaya A., Horvath C. // J. Chromatogr. A. 1998. V. 829. № 1. P. 1. https://doi.org/10.1016/S0021-9673(98)00727-4
  23. Szejtli J. // Chem. Rev. 1998. V. 98. № 5. P. 1743. https://doi.org/ 10.1021/cr970022c
  24. Schuster G., Lindner W. // J. Chromatogr. A. 2013. V. 1301. № 1. P. 98. https://doi.org/10.1016/j.chroma.2013.05.065
  25. Vailaya A., Horvath C. // J. Phys. Chem. 1996. V. 100. № 6. С. 2447. https://doi.org/10.1021/jp952285l

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Chromatograms of separation of model mixtures of dibromo- and 1-bromoadamantanes on different sorbents under HPLC conditions: NF – CYCLOBOND, T = 303 K (a); NF – SiO₂-C8, T = 303 K (b); PF – CH₃OH-H₂O (60:40), elution mode – isocratic.

Download (133KB)
3. Fig. 2. Schematic representation of the interaction of trans- (a) and cis-1,4-dibromoadamantanes (b) with the internal cavity of the β-CD fragment of CYCLOBOND NF.

Download (167KB)
4. Fig. 3. Correlation dependence between the lipophilicity parameters lgPow of halogenated adamantanes and the values ​​of lgkiʹ (313 K) obtained on CYCLOBOND and SiO₂-C8 sorbents.

Download (57KB)
5. Fig. 4. The relationship between the values ​​of –DsorUio*/(RT) and Ai for the considered HPLC systems with different sorbents at Tav = 318 K (the dotted line corresponds to the equality of the contributions of DsorUio*/(RTav) and Ai).

Download (105KB)

Copyright (c) 2025 Russian Academy of Sciences