Адсорбция молибдена(VI) и рения(VII) на механоактивированном графите

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Впервые исследованы сорбционные свойства механоактивированного графита по отношению к молибдену и рению. Найдены оптимальные условия, при которых возможно разделение металлов — достигается адсорбция молибдена до 95% при адсорбции рения 3%: азотнокислый раствор, рН 3 в присутствии 50 об. % этанола, перемешивание в течение 60 мин. Максимальная сорбционная емкость сорбента по отношению к Mo(VI) по модели Ленгмюра составила 115 мг/г. Адсорбция соответствовала модели кинетики псевдо-второго порядка. Образец после адсорбции молибдена охарактеризован методами РФЭС, рентгенофазового (РФА) и рентгено-структурного анализа (РСА), сканирующей электронной микроскопии. В результате механоактивации произошло уменьшение среднего размера кристаллитов графита, увеличение расстояния между слоями и изменение поверхностного состояния углерода.

Полный текст

Доступ закрыт

Об авторах

А. Д. Коробицына

Институт металлургии УрО РАН

Автор, ответственный за переписку.
Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-7830-2274
Россия, 620016, Екатеринбург

Н. В. Печищева

Институт металлургии УрО РАН

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-7281-1342
Россия, 620016, Екатеринбург

Е. Ю. Конышева

Институт металлургии УрО РАН

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0003-3043-7978
Россия, 620016, Екатеринбург

К. Ю. Шуняев

Институт металлургии УрО РАН

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-1530-5988
Россия, 620016, Екатеринбург

Список литературы

  1. Торшонов Д.Б., Гуляшинов А.Н., Антропова И.Г. // Фундаментальные исследования. 2005. № 9. С. 30.
  2. Петрова А.М., Касиков А.Г. // Тр. Кольского научного центра РАН. 2015. С. 190.
  3. Evdokimova O., Zaitceva P., Pechishcheva N. et al. // Curr. Anal. Chem. 2014. V. 10, № 4. P. 449. https://doi.org/10.2174/157341101004140701102351
  4. Pechishcheva N., Korobitsyna A., Ordinartsev D. et al. // Sep. Sci. Technol. 2022. V. 57. № 2. P. 180. https://doi.org/10.1080/01496395.2021.1891436
  5. Палант А.А., Трошкина И.Д., Чекмарев А.М., Костылев А.И. Технология рения. М.: ООО «Галлея-Принт», 2015. 329 с.
  6. Seo S., Choi W.S., Yang T.J. et al. // Hydrometallurgy. 2012. V. 129—130. P. 145. https://doi.org/10.1016/j.hydromet.2012.06.007
  7. Chen D., Chang H., Meng Q., Xing C. // Trans. Non Ferrous Met. Soc. China. 1993. V. 3. № 1. P. 35.
  8. Романенко А.В., Симонов П.А. Промышленный катализ в лекциях № 7. М.: Калвис, 2007. 128 с.
  9. Toteva V., Radoykova T., Tzvetkova Ch. et al. // Bulg. Chem. Commun. 2021. V. 53. № 3. P. 287. https://doi.org/10.34049/bcc.53.3.5333
  10. Хандорин Г.П., Дубов Г.И., Мазин В.И. и др. // Изв. томского политех. ун-та. 2010. Т. 316. № 3. С. 5.
  11. Pechishcheva N.V., Estemirova S. Kh., Kim А.V., P.V. et al. // Diamond Relat. Mater. 2022. V. 127. 109152. https://doi.org/10.1016/j.diamond.2022.109152
  12. Кононов В.А. // Новые огнеупоры. 2021. Т. 1. № 3. С. 3. https://doi.org/10.17073/1683-4518-2021-3-3-10
  13. Crystallography Open Database (COD). https://www.crystallography.net/cod/search.html. Последнее обращение 15 октября 2024.
  14. Hou Y., Wu J., Konysheva E. Yu. // Int. J. Hydrogen Energy. 2016. V. 41. № 6. P. 3994. https://doi.org/10.1016/j.ijhydene.2015.12.168
  15. Shlyakhtina A.V., Lyskov N.V., Konysheva E. Yu. et al. // J. Solid State Electrochem. 2020. V. 24, P. 1475. https://doi.org/10.1007/s10008-020-04574-6
  16. Toby B.H., Von Dreele R.B. // J. Appl. Crystallogr. 2013. V. 46. P. 544. https://doi.org/10.1107/S002188981300353
  17. Pagnanelli F., Ferella F., Michelis I.D., Vegliò F. // Hydrometallurgy. 2011. V. 110. P. 67. https://doi.org/10.1016/j.hydromet.2011.08.008
  18. Муханова И.М., Новикова Е.А., Минахметов Р.А. Поверхностные явления. Самара: Изд-во Самар. ун-та, 2022. 96 с.
  19. Ергожин Е.Е., Чалов Т.К., Хакимболатова К.Х. и др. // Актуальные проблемы гуманитарных и естественных наук. 2015. № 2—1. С. 54.
  20. Мельников С.С., Заболоцкий В.И., Ачох А.Р. // Сорбционные и хроматографические процессы. 2014. Т. 14. № 2. С. 312.
  21. Матвейчук Ю.В., Станишевский Д.В. // Журн. аналит. химии. 2020. Т. 75. № 6. С. 496. https://doi.org/10.31857/S0044450220040106
  22. Гольц Л.Г., Колпакова Н.А. // Изв. Томского политех. ун-та. 2006. Т. 309. № 6. С. 77.
  23. Kołczyk-Siedlecka K., Socha R.P., Yang X. et al. // Hydrometallurgy. 2023. V. 215. P. 105973. https://doi.org/10.1016/j.hydromet.2022.105973
  24. Антонов А.В., Ищенко А.А. // Изв. высших учебных заведений. Химия и химическая технология. 2007. Т. 50. № 9. С. 113.
  25. Филиппова И., Филиппова Н. Способ обработки смеси этилового спирта и воды (патент RU2107679 C1, 1996).
  26. Гайбакян Д.С., Худавердян Д.Х. // Армянский хим. журн. 1975. № 5. С. 390.
  27. Котельникова Т.А., Кузнецов Б.В., Морева А.А., Муравьева Г.П. // Сорбционные и хроматографические процессы. 2012. Т. 12. № 2. С. 295.
  28. Benzaoui T., Selatnia A., Djabali D. // Adsorpt. Sci. Technol. 2018. V. 36. № 1—2. P. 114. https://doi.org/10.1177/0263617416685099
  29. Fayos J. // J Solid State Chem. 1999. V. 148. № 2. P. 278. https://doi.org/10.1006/jssc.1999.8448
  30. Kovtun A., Jones D., Dell’Elce S. et al. // Carbon. 2019. V. 143. P. 268. https://doi.org/10.1016/j.carbon.2018.11.012
  31. Biesinger M.C. // Appl. Surf. Sci. 2022. V. 597. 153681. https://doi.org/10.1016/j.apsusc.2022.153681
  32. Ляшенко С.Е. // Успехи современного естествознания. 2017. № 1. С. 13.
  33. Hassan A., Haile A.S., Tzedakis T. et al. // ChemSusChem. 2021. V. 14. № 18. P. 3945. https://doi.org/10.1002/cssc.202100966
  34. Шеин А.Б., Габов А.Л. Физические методы исследования. Металлография, микроскопия, электронная спектроскопия. Пермь, 2023. 168 c.
  35. Shan W., Shu Y., Chen H. et al. // Hydrometallurgy. 2016. V. 165. P. 251. https://doi.org/10.1016/j.hydromet.2016.02.005
  36. Gaete J., Molina L., Alfaro I. et al. // Miner. Eng. 2019. V. 136. P. 66. https://doi.org/10.1016/j.mineng.2019.03.006
  37. Derakhshi P., Ghafourian H., Khosravi M., Rabani M. // World Appl. Sci. J. 2009. V. 7. № 2. P. 230.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Степень адсорбции Mo(VI) и Re(VII) на GrМА при различных рН в азотнокислой (a), сернокислой (б) средах и в среде ацетатного буфера (в).

Скачать (148KB)
3. Рис. 2. Влияние массы навески GrМА на адсорбцию рения и молибдена. Азотнокислая среда с добавлением 50 об. % изопропилового спирта, рН 3, CRe = CMo = 10 мг/л, V = 15 мл.

Скачать (55KB)
4. Рис. 3. Кинетика адсорбции Mo(VI) на GrМА из 10 мг/л раствора, mадсорбента = 0.1 г, азотнокислая среда с добавлением 50 об. % изопропилового спирта, рН 3.

Скачать (25KB)
5. Рис. 4. Изотермы адсорбции молибдена в азотнокислой среде в присутствии: a) 50 об. % этилового, б) 50 об. % изопропилового спирта; C0 = 5—2000 мг/л, 0.1 г, 15 мл, 60 мин, рН 3.

Скачать (128KB)
6. Рис. 5. Рентгенограммы исходного графита (Gr), после механоактивации (GrМА) и после адсорбции молибдена (GrМА /Мо). Звездочками обозначены пики кремния, используемого как внутренний стандарт. Вклады фаз 1 и 2 (табл. 4) представлены на рентгенограммах.

Скачать (142KB)
7. Рис. 6. С1s РФЭС-спектры исходного графита Gr, после механоактивации GrMA и после адсорбции молибдена GrMA/Мо; Е — энергия связи.

Скачать (211KB)
8. Рис. 7. О1s РФЭС-спектры исходного графита Gr, после механоактивации GrMA и после адсорбции молибдена GrMA/Мо.

Скачать (208KB)
9. Рис. 8. Микрофотография поверхности GrMA/Мо (а) с картированием по углероду (б), молибдену (в) и кислороду (г).

Скачать (554KB)

© Российская академия наук, 2025