Фотоиндуцированная деструкция комплексных цианидов с использованием квазимонохроматического УФС-излучения KrCl-эксилампы (222 нм)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Изучены кинетические закономерности фотохимического окисления устойчивых цианистых соединений – комплексных цианидов (на примере гексацианоферратов), с персульфатом (окислительная система {УФ/S2O\(_{8}^{{2 - }}\)}), пероксидом водорода (окислительная система {УФ/H2O2}) при воздействии квазимонохроматического УФС-излучения KrCl-эксилампы (222 нм). По эффективности и скорости процесса деструкции целевого соединения рассмотренные окислительные системы можно выстроить в следующий ряд {УФ/S2O\(_{8}^{{2 - }}\)} > {УФ/H2O2} > {УФ}. Эффективная деструкция гексацианоферратов при микромолярных концентрациях (≤47 мкМ) до нетоксичных и биоразлагаемых соединений в комбинированной системе {УФ/S2O\(_{8}^{{2 - }}\)} обусловлена высокой окислительной способностью активных форм кислорода, образующихся вследствие фотолиза персульфата.

Об авторах

А. А. Батоева

Байкальский институт природопользования CO РАН

Email: abat@binm.ru
Россия, Улан-Удэ

Б. А. Цыбикова

Байкальский институт природопользования CO РАН

Email: abat@binm.ru
Россия, Улан-Удэ

М. Р. Сизых

Байкальский институт природопользования CO РАН

Автор, ответственный за переписку.
Email: abat@binm.ru
Россия, Улан-Удэ

Список литературы

  1. Deng Y., Zhao R. // Curr. Pollut. Reports. 2015. V. 1. P. 167. https://doi.org/10.1007/s40726-015-0015-z
  2. Giannakis S., Lin K.Y.A., Ghanbari F. // Chem. Eng. J. 2021. V.406. https://doi.org/10.1016/j.cej.2020.127083
  3. Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A. et al. // Chem. Eng. J. 2017. V. 323. P. 361. https://doi.org/10.1016/j.cej.2017.04.106
  4. Yang Y., Ok Y.S., Kim K.-H. et al. // Sci. Total Environ. 2017. V. 596–597. P. 303. https://doi.org/10.1016/j.scitotenv.2017.04.102
  5. Yang Q., Ma Y., Chen F. et al. // Chem. Eng. J. 2019. V. 378. P. 122149. https://doi.org/10.1016/j.cej.2019.122149
  6. Huang W., Bianco A., Brigante M. et al. // J. Hazard. Mater. 2018. V. 347. P. 279. https://doi.org/10.1016/j.jhazmat.2018.01.006
  7. Malato S., Fernandez-Ibanez P., Maldonado M. et al. // Catalysis Today. 2009. V. 147. P. 1. https://doi.org/10.1016/j.cattod.2009.06.018
  8. Tsydenova O., Batoev V., Batoeva A. // Int. J. Environ. Res. Public Health. 2015. V. 12. P. 9542. https://doi.org/10.3390/ijerph120809542
  9. Бойченко А.М., Ломаев М.И., Панченко А.Н. и др. Ультрафиолетовые и вакуумно-ультрафиолетовые эксилампы: Физика, техника и применения, STT, Томск. 2011. 512 с.
  10. Sosnin E., Avdeev S., Tarasenko V. et al. // Instruments Exp. Tech. 2015. V. 58. P. 309. https://doi.org/10.1134/S0020441215030124
  11. Popova S., Matafonova G., Batoev V. // Ecotoxicol. Environ. Saf. 2019. V. 169. P. 169. https://doi.org/10.1016/j.ecoenv.2018.11.014
  12. Sizykh M., Batoeva A., Tsydenova O. // Clean-Soil, Air, Water. 2018. V. 46. P. 1700187. https://doi.org/10.1002/clen.201700187
  13. Sizykh M., Batoeva A., Matafonova G. // J. Photochem. Photobiol. A Chem. 2023. V. 436. P. 114357. https://doi.org/10.1016/j.jphotochem.2022.114357
  14. Matafonova G., Batoev V. // Chemosphere. 2012. V. 89. P. 637. https://doi.org/10.1016/j.chemosphere.2012.06.012
  15. Budaev S.L., Batoeva A.A., Khandarkhaeva M.S. et al. // Russ. J. Phys. Chem. A. 2017. V. 91. P. 604. https://doi.org/10.1134/S0036024417030049
  16. Botz M.M., Mudder T.I., Akcil A.U. Cyanide Treatment: Physical, Chemical, and Biological Processes // Advanced in Gold Ore Processing ed. Adams M.D. Amsterdam: Elsevier Ltd. 2016. P. 619. https://doi.org/10.1016/B978-0-444-63658-4.00035-9.
  17. Kuyucak N., Akcil A. // Miner. Eng. 2013. V. 50–51. P. 13. https://doi.org/10.1016/j.mineng.2013.05.027
  18. Canonica S., Meunier L., von Gunten U. // Water Res. 2008. V. 42. P. 121. https://doi.org/10.1016/j.watres.2007.07.026
  19. ПНД Ф 14.1: 2.164-2000. Количественный химический анализ вод. Методика выполнения измерений массовых концентраций гексацианоферратов в пробах природных и сточных вод фотометрическим методом, ФБУ “ФЦАО”, Москва. 2009. 11 с.
  20. ПНД Ф 14.1: 2.56-96. Количественный химический анализ вод. Методика измерений массовой концентрации цианидов в природных и сточных водах фотометрическим методом с пиридином и барбитуровой кислотой. Москва. 2015. 27 с.
  21. Yang J., Zhu M., Dionysiou D.D. // Water Res. 2021. V. 189. P. 116627. https://doi.org/10.1016/j.watres.2020.116627
  22. Rosario-Ortiz F.L., Wert E.C., Snyder S.A. // Water Res. 2010. V. 44. P. 1440. https://doi.org/10.1016/j.watres.2009.10.031
  23. Sharma J., Mishra I.M., Kumar V. // J. Environ. Manage. 2015. V. 156. P. 266. https://doi.org/10.1016/j.jenvman.2015.03.048
  24. Yang S., Wang P., Yang X. et al. // J. Hazard. Mater. 2010. V. 179. P. 552. https://doi.org/10.1016/j.jhazmat.2010.03.039
  25. Anipsitakis G.P., Dionysiou D.D. // Appl. Catal. B. 2004. V. 54. P. 155. https://doi.org/10.1016/j.apcatb.2004.05.025
  26. Ghanbari F., Moradi M. // Chem. Eng. J. 2017. V. 310. https://doi.org/10.1016/j.cej.2016.10.064
  27. Furman O.S., Teel A.L., Watts R.J. // Environ. Sci. Technol. 2010. V. 44. P. 6423. https://doi.org/10.1021/es1013714
  28. Kusic H., Peternel I., Ukic S. et al. // Chem. Eng. J. 2011. V. 172. P. 109. https://doi.org/10.1016/j.cej.2011.05.076
  29. Neta P., Huie R., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 1027. https://doi.org/10.1063/1.555808
  30. Ibargüen-López H., López-Balanta B., Betancourt-Buitrago L. et al. // J. Environ. Chem. Eng. 2021. V. 9. P. 106233. https://doi.org/10.1016/j.jece.2021.106233
  31. Duan X., Niu X., Gao J. et al. // Curr. Opin. Chem. Eng. 2022. V. 38. P. 100867. https://doi.org/10.1016/j.coche.2022.100867
  32. Lee Y.-M., Lee G., Zoh K.-D. // J. Hazard. Mater. 2021. V. 403. P. 123591. https://doi.org/10.1016/j.jhazmat.2020.123591
  33. Clifton C.L., Huie R.E. // Int. J. Chem. Kinet. 1989. V. 21. P. 677. https://doi.org/10.1002/kin.550210807
  34. Buxton G.V, Greenstock C.L., Helman W.P. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. P. 513. https://doi.org/10.1063/1.555805
  35. Nam S.-N., Han S.-K., Kang J.-W. et al. // Ultrason. Sonochem. 2003. V. 10. P. 139. https://doi.org/10.1016/S1350-4177(03)00085-3
  36. Попова С.А., Матафонова Г.Г., Батоев В.Б. // Изв. вузов. Химия и хим. технология. 2019. Т. 62. С. 118. (Popova S.A. Generation of radicals in the ferrous-persulfate system using KrCl excilamp / S.A. Popova, G.G. Matafonova, V.B. Batoev // Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya. 2019. V. 62. № 5. P. 118–123) https://doi.org/10.6060/ivkkt.20196205.5819
  37. Светличный В.А., Кузнецова Р.Т., Копылова Т.Н. и др. // Оптика атмосферы и океана. 2001. V. 14. P. 38.
  38. Chen C., Du Y., Zhou Y. et al. // Water Res. 2021. V. 194. P. 116914. https://doi.org/10.1016/j.watres.2021.116914
  39. Sun B., Zheng Y., Shang C. et al. // J. Hazard. Mater. 2022. V. 430. P. 128450. https://doi.org/10.1016/j.jhazmat.2022.128450

Дополнительные файлы


© А.А. Батоева, Б.А. Цыбикова, М.Р. Сизых, 2023