Вычисление колебательно-вращательных частот и RКR-потенциалов молекулы HBr

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основе анализа экспериментальных частот переходов шести изотопических модификаций определены изотопически независимые параметры Umj, mjH, BrH молекулы HBr. Полученные значения параметров использованы для расчета как колебательно-вращательных энергий и частот переходов вплоть до колебательного состояния v = 8, так и RKR-потенциалов шести изотопологов. Проведено сравнение рассчитанных частот переходов с данными базы HITRAN.

Об авторах

Т. И. Величко

Тюменский индустриальный университет

Автор, ответственный за переписку.
Email: tivel@list.ru
Россия, 625000, Тюмень

С. Н. Михайленко

Институт оптики атмосферы им. В. Е. Зуева СО РАН

Email: semen@iao.ru
Россия, 634055, Томск

Список литературы

  1. Traub W.A., Johnson D.G., Jucks K.W., Chance K.V. // Geophys. Res. Lett. 1992. V. 19. № 16. P. 1651. https://doi.org/10.1029/92GL01800.
  2. Carlotti M., Ade P.A.R., Carli B. et al. // Geophys. Res. Lett. 1996. V. 22. № 23. P. 3207. https://doi.org/10.1029/95GL03264.
  3. Noll K.S. // Icarus. 1996. V. 124. № 2. P. 608. https://doi.org/10.1006/icar.1996.0234.
  4. Ligterink N.F.W., Kama M. // Astron. Astrophys. 2018. V. 614. Article A112. https://doi.org/10.1051/0004-6361/201732325.
  5. Arnolf S.J., Foster K.D. // Appl. Phys. Lett. 1978. V. 33. № 8. P. 716. https://doi.org/10.1063/1.90512.
  6. Botha L.R., Bollig C., Esser M.J.D. et al. // Opt. Express. 2009. V. 17. № 22. P. 20615. https://doi.org/10.1364/OE.17.020615.
  7. Zhou Z., Huang W., Cui Y. et al. // Opt. Lett. 2022. V. 47. № 22. P. 5785. https://doi.org/10.1364/OL.475690.
  8. Gordon I.E., Rothman L.S., Hargreaves R.J. et al. // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. Article 107949. https://doi.org/10.1016/j.jqsrt.2021.107949.
  9. Delahaye T., Armante R., Scott N.A. // J. Mol. Spectrosc. 2021. V. 380. Article 111510. https://doi.org/10.1016/j.jms.2021.111510.
  10. Coxon J.A., Hajigeorgiou P.G. // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 151. N. 1. P. 133. https://doi.org/10.1016/j.jqsrt.2014.08.028.
  11. Odashima H. // J. Mol. Spectrosc. 2006. V. 240. № 1. P. 69. https://doi.org/10.1016/j.jms.2006.08.010/.
  12. Watson J.K.G. // J. Mol. Spectrosc. 1980. V. 80. № 2. P. 411. https://doi.org/10.1016/0022-2852(80)90152-6.
  13. Tyuterev Vl.G., Velichko T.I. // Chem. Phys. Lett. 1984. V. 104. № 6. P. 596. https://doi.org/10.1016/0009-2614(84)80035-4.
  14. James T.C., Thibault R.J. // J. Chem. Phys. 1965. V. 42. № 4. P. 1450. https://doi.org/10.1063/1.1696135.
  15. Rank D.H., Fink U., Wiggins T.A. // J. Mol. Spectrosc. 1965. V. 18. № 2. P. 170. https://doi.org/10.1016/0022-2852(65)90073-1.
  16. Braun V., Bernath P.F. // J. Mol. Spectrosc. 1994. V. 167. № 2. P. 282. https://doi.org/10.1006/jmsp.1994.1235.
  17. Nishimiya N., Yukiya T., Ohtsuka T., Suzuki M. // J. Mol. Spectrosc. 1997. V. 182. № 2. P. 309. https://doi.org/10.1006/jmsp.1996.7206.
  18. Bernage P., Niay P., Bocquet H., Houdart R. // Rev. Phys. Appl. 1973. V. 8. № 4. P. 333. https://doi.org/10.1051/rphysap:0197300804033300.
  19. Bernage P., Niay P., Houdart R. // C.R. Acad. Sci. Paris. Serie B. 1974. V. 278. P. 235.
  20. Bernage P., Niay P. // C.R. Acad. Sci. Paris. Serie B. 1976. V. 282. P. 243.
  21. Carlisle C.B., Riris H., Wang L.G. et al. // J. Mol. Spectrosc. 1988. V. 130. № 2. P. 395. https://doi.org/10.1016/0022-2852(88)90086-0.
  22. DiLonardo G., Fusina L., DeNatale P. et al. // J. Mol. Spectrosc. 1991. V. 148. № 1. P. 86. https://doi.org/10.1016/0022-2852(91)90037-B.
  23. Jones G., Gordy W. // Phys. Rev. 1964. V. 136. № 5A. P. A1229. https://doi.org/10.1103/PhysRev.136.A1229.
  24. Van Dijk F.A., Dymanus A. // Chem. Phys. Lett. 1969. V. 4. № 4. P. 170. https://doi.org/10.1016/0009-2614(69)80089-8.
  25. De Natale P., Lorini L., Inguscio M. et al. // Appl. Opt. 1997. V. 36. № 24. P. 5822. https://doi.org/10.1364/AO.36.005822.
  26. Fayt A., Van Lerberghe D., Guelachvili G. // Mol. Phys. 1976. V. 32. № 4. P. 955. https://doi.org/10.1080/00268977600102371.
  27. Wells J.S., Jennings D.A., Maki A.G. // J. Mol. Spectrosc. 1984. V. 107. № 1. P. 48. https://doi.org/10.1016/0022-2852(84)90264-9.
  28. Herman M., Johns J.W.C., McKellar A.R.W. // J. Mol. Spectrosc. 1982. V. 95. N. 2. P. 405. https://doi.org/10.1016/0022-2852(82)90139-4.
  29. Bernage P., Niay P. // J. Mol. Spectrosc. 1976. V. 63. № 2. P. 317. https://doi.org/10.1016/0022-2852(76)90015-1.
  30. Cowan M., Gordy W. // Phys. Rev. 1958. V. 111. № 1. P. 209. https://doi.org/10.1103/PhysRev.111.209.
  31. DeLucia F.C., Helminger P., Gordy W. // Phys. Rev. A. 1971. V. 3. № 6. P. 1849. https://doi.org/10.1103/PhysRevA.3.1849.
  32. van Duk F.A., Dymanus A. // Chem. Phys. 1974. V. 6. № 3. P. 474. https://doi.org/10.1016/0301-0104(74)85032-9.
  33. Rosenblum B., Nethercot A.H., Jr. // Phys. Rev. 1955. V. 97. № 1. P. 84. https://doi.org/10.1103/PhysRev.97.84.
  34. Burrus C.A., Gordy W., Benjamin B., Livingston R. // Phys. Rev. 1955. V. 97. № 6. P. 1661. https://doi.org/10.1103/PhysRev.97.1661.
  35. Dunham J.L. // Phys. Rev. 1932. V. 41. № 6. P. 721. https://doi.org/10.1103/PhysRev.41.721.
  36. Rydberg R. // Zeit. für Physik. 1932. V. 73. № 5–6. P. 376. https://doi.org/10.1007/BF01341147.
  37. Klein O. // Zeit. für Physik. 1932. V. 76. № 3–4. P. 226. https://doi.org/10.1007/BF01341814.
  38. Rees A.L.G. // Proc. Phys. Soc. 1947. V. 59. № 6. P. 998. doi: 10.1088/0959-5309/59/6/310.
  39. Асфин Р.Е., Доманская А., Мауль К. // Оптика и спектроскопия. 2021. Т. 129. № 12. С. 1463. doi: 10.21883/OS.2021.12.51731.2383-21.
  40. Asfin R.E., Domanskaya A., Maul C. // Opt. Spectrosc. 2022. V. 130. № 1. P. 1. https://doi.org/10.1134/S0030400X22010027.]

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024