The Molecular Mechanism of H2O2 Decomposition in a Reaction with an Au25(SCH3)12 Cluster
- 作者: Nikitenko N.G.1, Shestakov A.F.1,2
-
隶属关系:
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Faculty of Fundamental Physical and Chemical Engineering, Moscow State University
- 期: 卷 97, 编号 6 (2023)
- 页面: 860-870
- 栏目: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.06.2023
- URL: https://permmedjournal.ru/0044-4537/article/view/668724
- DOI: https://doi.org/10.31857/S0044453723060213
- EDN: https://elibrary.ru/KCPHXC
- ID: 668724
如何引用文章
详细
The reactions of neutral and anionic Au25(SCH3)12 clusters with one H2O2 molecule (mechanism I) and with its dimer (H2O2)2 (mechanism II) have been studied within the framework of the density functional theory (DFT). It has been established that all processes proceed with low activation barriers and a large gain in energy during the formation of products, and also that mechanisms I and II are interconnected. Based on the calculated data, the structure of gold clusters with the most probable active centers for further interaction with methane, which contain one or two O atoms, is proposed. In this case, clusters containing the O2 fragment can form not only in the reaction of the initial cluster Au25(SCH3)12 with hydrogen peroxide, but also with molecular oxygen, since the O2 adsorption energy is low and the process is close to equilibrium.
作者简介
N. Nikitenko
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: ng_nikitenko@mail.ru
Chernogolovka, Moscow oblast, Russia
A. Shestakov
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Faculty of Fundamental Physical and Chemical Engineering, Moscow State University
编辑信件的主要联系方式.
Email: ng_nikitenko@mail.ru
Chernogolovka, Moscow oblast, Russia; Moscow, Russia
参考
- Yaseen M., Humayun M., Khan A. et al. // Energies. 2021. V. 14. № 5. P. 1278. https://doi.org/10.3390/en14051278
- Ishida T., Murayama T., Taketoshi A. et al. // Chem. Rev. 2020. V. 120. № 2. P. 464. https://doi.org/10.1021/acs.chemrev.9b00551
- Li Z., Brouwer C., He C. // Ibid. 2008. V. 108. № 8. P. 3239. https://doi.org/10.1021/cr068434l
- Stratakis M., Garcia H. // Ibid. 2012. V. 112. № 8. P. 4469. https://doi.org/10.1021/cr3000785
- Sankar M., He Q., Engel R.V. et al. // Ibid. 2020. V. 120. № 8. P. 3890. https://doi.org/10.1021/acs.chemrev.9b00662
- Carabineiro S.A.C. // Front. Chem. 2019. V. 7:702. https://doi.org/10.3389/fchem.2019.00702
- Qi G., Davies T.E., Nasrallah A. et al. // Nature Catalysis. 2022. V. 5. № 1. P. 45. https://doi.org/10.1038/s41929-021-00725-8
- Golovanova S.A., Sadkov A.P., Shestakov A.F. // Kinetics and Catalysis. 2020. V. 61. № 5. P. 740. https://doi.org/10.1134/s0023158420040060
- Cai X., Saranya G., Shen K.Q. et al. // Angew. Chem.-Int. Edit. 2019. V. 58. № 29. P. 9964. https://doi.org/10.1002/anie.201903853
- Staykov A., Miwa T., Yoshizawa K. // J. of Catalysis. 2018. V. 364. P. 141. https://doi.org/10.1016/j.jcat.2018.05.017
- Mikami Y., Dhakshinamoorthy A., Alvaro M. et al. // Catal. Sci. Technol. 2013. V. 3. №1. P. 58. https://doi.org/10.1039/c2cy20068f
- Wani I.A., Jain S.K., Khan H. et al. // Curr. Pharm. Biotechnol. 2021. V. 22. № 6. P. 714. https://doi.org/10.2174/1389201022666210218195205
- Nasaruddin R.R., Chen T.K., Yan N. et al. // Coord. Chem. Rev. 2018. V. 368. P. 60. https://doi.org/10.1016/j.ccr.2018.04.016
- Liu L., Li H.Y., Tan Y. et al. // Catalysts. 2020. V. 10. № 1. P. 107. https://doi.org/10.3390/catal10010107
- Asao N., Hatakeyama N., Menggenbateer et al. // Chem. Comm. 2012. V. 48. № 38. P. 4540. https://doi.org/10.1039/c2cc17245c
- Zhu Y., Qian H.F., Drake B.A. et al. // Angew. Chem.-Int. Edit. 2010. V. 49. № 7. P. 1295. https://doi.org/10.1002/anie.200906249
- Tian S.B., Cao Y.T., Chen T.K. et al. // Chem. Comm. 2020. V. 56. № 8. P. 1163. https://doi.org/10.1039/c9cc08215h
- Yao Q.F., Wu Z.N., Liu Z.H. et al. // Chem. Sci. 2021. V. 12. № 1. P. 99. https://doi.org/10.1039/d0sc04620e
- Heaven M.W., Dass A., White P.S. et al. // J. Am. Chem. Soc. 2008. V. 130. № 12. P. 3754. https://doi.org/10.1021/ja800561b
- Zhu M., Aikens C.M., Hollander F.J. et al. // Ibid. 2008. V. 130. № 18. P. 5883. https://doi.org/10.1021/ja801173r
- Wu Z.W., Gayathri C., Gil R.R. et al. // Ibid. 2009. V. 131. № 18. P. 6535. https://doi.org/10.1021/ja900386s
- Juarez-Mosqueda R., Mpourmpakis G. // Phys. Chem. Chem. Phys. 2019. V. 21. № 40. P. 22272. https://doi.org/10.1039/c9cp03982a
- Zhu K.X., Liang S.X., Cui X.J. et al. // Nano Energy. 2021. V. 82. 105718 https://doi.org/10.1016/j.nanoen.2020.105718
- Kang X., Chong H.B., Zhu M.Z. // Nanoscale. 2018. V. 10. № 23. P. 10758. https://doi.org/10.1039/c8nr02973c
- Голованова С.А., Садков А.П., Шестаков А.Ф. // Изв. АН. Сер. Хим. 2022. № 4. С. 665.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Stevens W.J., Bash H., Krauss M. // J. Chem. Phys. 1984. V. 81. № 12. P. 6026.
- Stevens W.J., Krauss M., Bash H. et al. // Can. J. Chem. 1992. V. 70. P. 612.
- Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. Хим. 2005. № 3. С. 804. https://doi.org/10.1007/s11172-005-0329-x
- Nikitenko N.G., Shestakov A.F. // Kinetics and Catalysis. 2014. V. 55. № 4. P. 401. https://doi.org/10.1134/s0023158414030100
- Nikitina N.A., Pichugina D.A., Kuz’menko N.E. // Kinet. Catal. 2019. V. 60. № 5. P. 606. https://doi.org/10.1134/s0023158419050033
- Pichugina D.A., Nikitina N.A., Kuz’menko N.E. // J. Phys. Chem. C. 2020. V. 124. № 5. P. 3080. https://doi.org/10.1021/acs.jpcc.9b10286
- Barone V., Cossi M., Tomasi J. // J. Chem. Phys. 1997. V. 107. № 8. P. 3210. https://doi.org/10.1063/1.474671
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03. Revision A.7. Pittsburgh: Gaussian Inc., 2003.
- Wu Z.K., Jin R.C. // ACS Nano. 2009. V. 3. № 7. P. 2036. https://doi.org/10.1021/nn9004999
- Wang W.L., Ji C.L., Liu K. et al. // Chem. Soc. Rev. 2021. V. 50. № 3. P. 1874. https://doi.org/10.1039/d0cs00254b
- Никитенко Н.Г., Шестаков А.Ф. // Кинетика и катализ. 2013. Т. 54. № 2. С. 177. https://doi.org/10.1134/S0023158413020110
- Никитенко Н.Г., Шестаков А.Ф. // ДАН. 2013. Т. 450. № 2. С. 181. https://doi.org/10.1134/s0012500813050066
- Liu K., Chen T., He S.Y. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 42. P. 12952. https://doi.org/10.1002/anie.201706647
- Liu K., He S.Y., L. Li et al. // Scientific Reports. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-89235-y
- Шамб У., Сеттерфилд Ч., Вентворс Р. Перекись водорода. Москва: Изд-во иностр. лит. 1958. 578 с.
- Kelly C.P., Cramer C.J., Truhlar D.G. // J. Phys. Chem. B. 2007. V. 111. № 2. P. 408. https://doi.org/10.1021/jp065403l
- Sivadinarayana C., Choudhary T.V., Daemen L.L. et al. // J. Am. Chem. Soc. 2004. V. 126. № 1. P. 38. https://doi.org/10.1021/ja0381398
- Agarwal N., Thomas L., Nasrallah A. et al. // Catalysis Today. 2021. V. 381. P. 76. https://doi.org/10.1016/j.cattod.2020.09.001
- Yao Z.H., Zhao J.Y., Bunting R.J. et al. // Acs Catalysis. 2021. V. 11. № 3. P. 1202. https://doi.org/10.1021/acscatal.0c04125
- Tang Y.Q., Zhang Z.H., Lu M.K. et al. // Ind. Eng. Chem. Res. 2019. V. 58. № 33. P. 15119. https://doi.org/10.1021/acs.iecr.9b01459
- Beletskaya A.V., Pichugina D.A., Shestakov A.F. et al. // J. Phys. Chem. A. 2013. V. 117. № 31. P. 6817. https://doi.org/10.1021/acs.iecr.9b01459
- Wells D.H., Delgass W.N., Thomson K.T. // J. Catal. 2004. V. 225. № 1. P. 69. https://doi.org/10.1016/j.jcat.2004.03.028
- Barrio L., Liu P., Rodriguez J.A. et al. // J. Phys. Chem. C. 2007. V. 111. № 51. P. 19001. https://doi.org/10.1021/jp073552d
- Ford D.C., Nilekar A.U., Xu Y. et al. // Surface Science. 2010. V. 604. № 19–20. P. 1565. https://doi.org/10.1016/j.susc.2010.05.026
- Joshi A.M., Delgass W.N., Thomson K.T. // J. Phys. Chem. B. 2005. V. 109. № 47. P. 22392. https://doi.org/10.1021/jp052653d
- Ji J., Lu Z., Lei Y., Turner C.H. // Catalysts. 2018. V. 8. № 10. P. 421. https://doi.org/10.3390/catal8100421
- Coperet C. // Chem. Rev. 2010. V. 110. № 2. P. 656. https://doi.org/10.1021/cr900122p
