Co-leaching of Li, Fe, Al, and Cu from active materials of LFP batteries
- 作者: Salomatin A.M.1,2, Zinov’eva I.V.1, Zakhodyaeva Y.A.1, Voshkin A.A.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry RAS
- National Research University Higher School of Economics
- 期: 卷 69, 编号 7 (2024)
- 页面: 1063-1072
- 栏目: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://permmedjournal.ru/0044-457X/article/view/666486
- DOI: https://doi.org/10.31857/S0044457X24070158
- EDN: https://elibrary.ru/XNATAH
- ID: 666486
如何引用文章
详细
Co-leaching of the cathode and anode materials of lithium iron phosphate (LFP) batteries was studied. It was determined that the nature of mineral acid (nitric, sulfuric, hydrochloric) affects the degree of leaching of Li, Fe, Al, and Cu. Hydrochloric acid was chosen as the most suitable leaching agent. The effect of the following parameters of the leaching of active materials was investigated: process duration, temperature, hydrochloric acid concentration, and solid : liquid ratio. For complete leaching of copper, hydrogen peroxide was used as an oxidizing agent. The conditions for the most complete extraction of target elements were found to be 25°C, 2 h, 2 M hydrochloric acid solution, 0.05 M H2O2 solution, solid : liquid ratio 1 : 50. The possibility of sufficiently complete leaching of the main elements from spent LFP batteries at room temperature was demonstrated.
作者简介
A. Salomatin
Kurnakov Institute of General and Inorganic Chemistry RAS; National Research University Higher School of Economics
Email: yz@igic.ras.ru
俄罗斯联邦, Moscow, 119071; Moscow, 109028
I. Zinov’eva
Kurnakov Institute of General and Inorganic Chemistry RAS
Email: yz@igic.ras.ru
俄罗斯联邦, Moscow, 119071
Yu. Zakhodyaeva
Kurnakov Institute of General and Inorganic Chemistry RAS
编辑信件的主要联系方式.
Email: yz@igic.ras.ru
俄罗斯联邦, Moscow, 119071
A. Voshkin
Kurnakov Institute of General and Inorganic Chemistry RAS
Email: yz@igic.ras.ru
俄罗斯联邦, Moscow, 119071
参考
- The United Nations // 2015.
- The Global EV Outlook // 2023. https://www.iea.org/reports/global-ev-outlook-2023
- Fallah N., Fitzpatrick C. // J. Energy Storage. 2023. V. 68. P. 107740. https://doi.org/10.1016/j.est.2023.107740
- Fan T., Liang W., Guo W. et al. // J. Energy Storage. 2023. V. 71. P. 108126. https://doi.org/10.1016/j.est.2023.108126
- Hu J., Huang W., Yang L. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. https://doi.org/10.1039/D0NR03776A
- Yao Y., Zhu M., Zhao Z. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13611. https://doi.org/10.1021/acssuschemeng.8b03545
- Davis K., Demopoulos G.P. // RSC Sustain. 2023. V. 1. № 8. P. 1932. https://doi.org/10.1039/D3SU00142C
- Dobó Z., Dinh T., Kulcsár T. // Energy Reports. 2023. V. 9. P. 6362. https://doi.org/10.1016/j.egyr.2023.05.264
- Zhou L.-F., Yang D., Du T. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.578044
- Vasconcelos D. da S., Tenório J.A.S., Botelho Junior A.B. et al. // Metals (Basel). 2023. V. 13. № 3. P. 543. https://doi.org/10.3390/met13030543
- Aaltonen M., Peng C., Wilson B.P. et al. // Recycling. 2017. V. 2. № 4. P. 20. https://doi.org/10.3390/recycling2040020
- Song D., Wang T., Liu Z. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 1. P. 107102. https://doi.org/10.1016/j.jece.2021.107102
- Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
- Кожевникова А.В., Уварова Е.С., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2023. Т. 57. № 5. С. 553. https://doi.org/10.31857/S0040357123050111
- Nicol M.J. // Hydrometallurgy. 2020. V. 193. P. 105328. https://doi.org/10.1016/j.hydromet.2020.105328
- Huang Z., Chen T., Zhou Y. et al. // Processes. 2020. V. 8. № 12. P. 1534. https://doi.org/10.3390/pr8121534
- Li H., Xing S., Liu Y. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 9. P. 8017. https://doi.org/10.1021/acssuschemeng.7b01594
- Liu W., Li K., Wang W. et al. // Can. J. Chem. Eng. 2023. V. 101. № 4. P. 1831. https://doi.org/10.1002/cjce.24617
- Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Metals (Basel). 2021. V. 11. № 12. P. 1964. https://doi.org/10.3390/met11121964
- Зиновьева И.В., Федоров А.Я., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2021. Т. 55. № 4. С. 480. https://doi.org/10.31857/S0040357121040199
- Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Processes. 2022. V. 10. № 12. P. 2671. https://doi.org/10.3390/pr10122671
- Dong L., Li Y., Shi P. et al. // J. Power Sources. 2023. V. 582. P. 233564. https://doi.org/10.1016/j.jpowsour.2023.233564
- Binnemans K., Jones P.T. // J. Sustain. Metall. 2023. V. 9. № 2. P. 423. https://doi.org/10.1007/s40831-023-00681-6
- Kadachi A.N., Al-Eshaikh M.A. // X-Ray Spectrometry. 2012. V. 41. № 5. P. 350. https://doi.org/10.1002/xrs.2412
- Iwai M., Majima H., Awakura Y. // Hydrometallurgy. 1988. V. 20. № 1. P. 87. https://doi.org/10.1016/0304-386X(88)90028-X
补充文件
