Heat Capacity and Magnetic Properties of PrMgAl11O19

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Isobaric heat capacity of magnesium-praseodymium hexaaluminate PrMgAl11O19 with magnetoplumbite structure was measured by three calorimetric methods in the temperature range 2–1865 K. Heat capacity values were docked and smoothed to calculate thermodynamic functions (entropy, enthalpy change and derived Gibbs energy) in the mentioned temperature region. A gentle anomaly of heat capacity with a maximum of about 8 K was found, its entropy and enthalpy were calculated. Magnetic properties of PrMgAl11O19 have been studied using the method of dynamic magnetic susceptibility in the temperature range 2–300 K. Based on the results of measurements of magnetic properties, an anomaly was found on the imaginary component of dynamic magnetic susceptibility, the temperature range of which is consistent with the area of the anomaly of heat capacity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Lu H., Wang C.-A., Zhang C. // Ceram. Int. 2014. V. 40. P. 16273. https://doi.org/10.1016/j.ceramint.2014.07.064
  2. Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392. https://doi.org/10.1016/S0257-8972(01)01642-5
  3. Bansal N.P., Zhu D. 2008. V. 202. P. 2698. https://doi.org/10.1016/j.surfcoat.2007.09.048
  4. Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601. https://doi.org/10.1016/j.optlaseng.2008.04.001
  5. Friedrich C., Gadow R., Schirmer T.J. // Therm. Spray Technol. 2001. V. 10. P. 592. https://doi.org/10.1361/105996301770349105
  6. Liu Z.-G., Ouyang J.-H., Zhou Y. // J. Alloys Compd. 2009. V. 472. P. 319. https://doi.org/10.1016/j.jallcom.2008.04.042
  7. Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8. https://doi.org/10.1016/0022-4596(89)90048-0
  8. Lee K.N. Protective Coatings for Gas Turbines, The Gas Turbine Handbook, Section 4.4.2, U.S. Department of Energy, NETL, 2006, p. 431.
  9. Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734. https://doi.org/10.1016/j.jallcom.2009.06.068
  10. Chen X., Gu L., Zou B. et al. // Surf. Coat. Technol. 2012. V. 206. P. 2265. https://doi.org/10.1016/j.surfcoat.2011.09.076
  11. Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979. https://doi.org/10.1016/j.jeurceramsoc.2008.01.023
  12. Halvarsson M., Langer V., Vuorinen S. // Surf. Coat. Technol. 1995. V. 76–77. P. 358. https://doi.org/10.1016/0257-8972(95)02558-8
  13. Doležal V., Nádherný L., Rubešová K. et al. // Ceram. Int. 2019. V. 45. P. 11233. https://doi.org/10.1016/j.ceramint.2019.02.162
  14. Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289. https://doi.org/10.1111/j.1151-2916.1986.tb07380.x
  15. Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864. https://doi.org/10.1063/1.328680
  16. Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892. https://doi.org/10.1016/j.ceramint.2021.07.050.
  17. Lu H., Wang C.-A., Zhang C., Tong S. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.10.030
  18. Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  19. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052.
  20. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1607.
  21. Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др. // Неорган. материалы. 2020. Т. 56. № 1. С. 102. https://doi.org/10.31857/S0002337X20010145
  22. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  23. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  24. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  25. Colwelland J.H., Magnum B.W. // J. Appl. Phys. 1967. V. 38. P. 1468.
  26. Zhou H.D., Wiebe C.R., Janik J.A. et al. // Phys. Rev. Lett. 2008. V. 101. P. 227204. https://doi.org/10.1103/PhysRevLett.101.227204
  27. Greedan J.E. // J. Alloys Compd. 2006. V. 408–412. P. 444. https://doi.org/10.1016/j.jallcom.2004.12.084
  28. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2024. Т. 69. № 6. (в печати)
  29. Тюрин А.В., Хорошилов А.В., Рюмин М.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1668. al.
  30. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  31. Gruber G.B., Justice B.H., Westrum E.F., Zandi B. // J. Chem. Thermodyn. 2002. V. 34. P. 457. https://doi.org/ 10.1006/jcht.2001.0860
  32. Chase M.W. Jr. NIST-JANAF Thermochemical Tables. Am. Chem. Soc., 1998.
  33. Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH, 1995.
  34. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. P. 159.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Appendix
Жүктеу (948KB)
3. Fig. 1. Temperature dependence of the heat capacity of PrMgAl11O19.

Жүктеу (122KB)
4. Fig. 2. Heat capacity in the low-temperature anomaly region: 1 - heat capacity of PrMgAl11O19, 2 - heat capacity of LaMgAl11O19 [27], dashed line - (Cp(LaMgAl11O19) + CSCh (50 cm-1).

Жүктеу (84KB)
5. Fig. 3. Difference between the heat capacities of PrMgAl11O19 determined in the present work and calculated by the Neumann-Kopp rule: 1 - by relation (5) (∆), 2 - by relation (6) (○). Dashed line 3 corresponds to the difference of 2.5%.

Жүктеу (77KB)
6. Fig. 4. Temperature dependences of the real (χʹ, empty symbols) and imaginary (χʺ, filled symbols) parts of the dynamic magnetic susceptibility of the PrMgAl11O19 sample in a zero magnetic field at different frequencies. The amplitude of the alternating magnetic field is 1 E.

Жүктеу (121KB)
7. Fig. 5. Temperature dependences of the imaginary component of the dynamic magnetic susceptibility of the PrMgAl11O19 sample in a 1000 E magnetic field at different frequencies. The amplitude of the alternating magnetic field is 1 E.

Жүктеу (106KB)

© Russian Academy of Sciences, 2024