Synthetic aluminosilicates as modifiers for polytetrafluoroethylene

Cover Page

Cite item

Full Text

Abstract

Currently, there is an intensive growth in the use of polymer composite materials in all areas of industry, which is due to their unique properties—high strength, lightness, corrosion resistance. In connection with the development of new technologies, there is a need to create a new class of environmentally friendly materials that provide efficient and cost-effective use of raw materials. This paper considers synthetic nanostructured aluminosilicates with a given Si / Al ratio of 1; 3; 5 as modifiers of polytetrafluoroethylene. The phase, elemental composition and thermal behavior of the synthesized compounds are studied. It was found that the use of aluminosilicates contributes to an increase in tensile strength by 40% and relative elongation at break by 70% relative to the original polymer matrix. The introduction of aluminosilicate is accompanied by an increase in wear resistance by 521 times. Thus, a new class of modifiers for polymer composite materials has been synthesized.

Full Text

Restricted Access

About the authors

S. N. Danilova

North-Eastern Federal University named after. M.K. Ammosova

Author for correspondence.
Email: dsn.sakhayana@mail.ru
Russian Federation, Yakutsk

P. N. Tarasova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
Russian Federation, Yakutsk

S. B. Yarusova

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: dsn.sakhayana@mail.ru
Russian Federation, Vladivostok

Iu. V. Kapitonova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
Russian Federation, Yakutsk

A. M. Spiridonov

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
Russian Federation, Yakutsk

P. S. Gordienko

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: dsn.sakhayana@mail.ru
Russian Federation, Vladivostok

A. A. Okhlopkova

North-Eastern Federal University named after. M.K. Ammosova

Email: dsn.sakhayana@mail.ru
Russian Federation, Yakutsk

E. K. Papynov

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
Russian Federation, Vladivostok

O. O. Shichalin

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
Russian Federation, Vladivostok

A. O. Lembikov

Far Eastern Federal University

Email: dsn.sakhayana@mail.ru
Russian Federation, Vladivostok

References

  1. Rashid A.B., Haque M., Islam S.M. et al. // Heliyon. 2024. V. 10. P. 24692. https://doi.org/10.1016/j.heliyon.2024.e24692
  2. Khan F., Hossain N., Mim J.J. et al. // J. Eng. Res. 2024. P. 24692. https://doi.org/10.1016/j.jer.2024.02. 24692
  3. Parveez B., Kittur M.I., Badruddin I. et al. // Polymers. 2022. Т. 14. № 22. P. 5007. https://doi.org/10.3390/polym14225007
  4. Deshwal D., Belgamwar S.U., Bekinal S.I. et al. // Polym. Compos. 2024. V. 45. № 16. P. 14475. https://doi.org/10.1002/pc.28802
  5. Xu K., Yang Z., Sun W. et al. // Corros Sci. 2023. V. 218. P. 111141. https://doi.org/10.1016/j.corsci.2023.111141
  6. Лепов В.В., Охлопкова А.А. // ПРАС. 2024. Т. 28. № 4. P. 627.
  7. Khoddamzadeh A., Liu R., Wu X. et al. //Wear. 2009. V. 266. № 7-8. P. 646. https://doi.org/10.1016/j.wear.2008.08.007
  8. Chandran A.J., Rangappa S.M., Suyambulingam I. et al. // J. Vinyl Addit. Technol. 2024. V. 30. № 5. P. 1083. https://doi.org/10.1002/vnl.22106
  9. Spiridonov A.M., Sokolova M.D., Fedoseeva V.I. et al. // Mater. Today Chem. 2024. V. 20. P. 100441. https://doi.org/10.1016/j.mtchem.2021.100441.
  10. Aderikha V.N., Shapovalov V.A. // J. Frict. and Wear. 2011. V. 32. P. 124. https://doi.org/10.3103/S1068366611020024
  11. Kumar B., Fellner J.P. // J. Power Sources. 2003. V. 123. № 2. P. 132. https://doi.org/10.1016/S0378-7753(03)00530-5
  12. Meng Y., Zhang B., Su J. et al. // Fibers and Polym. 2020. V. 21. P. 1126.
  13. Mukhtar N.Z.F., Borhan M.Z., Rusop M. et al. // Adv. Mater. Res. 2014. V. 832. P. 547. https://doi.org/10.4028/www.scientific.net/AMR.832.547
  14. Yu H., Zhu Y., Lu L. et al. // Int. J. Min. Sci. and Tech. 2023. Т. 33. № 6. С. 783.
  15. Wang X., Tong W., Li Y. et al. // Appl. Clay Sci. 2021. V. 215. P. 106330. https://doi.org/10.1016/j.clay.2021.106330
  16. Тарасова П.Н., Капитонова Ю.В., Лазарева Н.Н. и др. // ЮСНВ. 2024. Т. 57. № 5. С. 135.
  17. Нехлюдова Е.А., Иванов Н.П., Ярусова С.Б. и др.// Неорган. материалы. 2023. Т. 59. № 12. С. 1350. https://doi.org/10.31857/S0002337X23120072
  18. Ярусова С.Б., Гордиенко П.С., Панасенко А.Е. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 278. https://doi.org/10.1134/S0044453719020341
  19. Yan Y., Jia Z., Yang Y. // Procedia Environ Sci. 2011. V. 10. P. 929. https://doi.org/10.1016/j.proenv.2011.09.149
  20. Gordienko P.S., Yarusova S.B., Shabalin I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1393. https://doi.org/10.1134/S0036023622090042
  21. Kumar A., Chakrabarti A., Shekhawat M. S. et al. // JETIR. 2019. V. 6. № 2. P. 546.
  22. Dehghani, P., Soleimani F. // Adv. Ceram. Prog. 2021. V. 7. № 2. P. 16. https://doi.org/10.30501/acp.2021.286931.1060
  23. Shirvanimoghaddam K., Balaji K.V., Yadav R. et al. // Compos. Part B: Eng. 2021. V. 223. P. 109121. https://doi.org/10.1016/j.compositesb.2021.109121
  24. Heidari M., Labousse M., Leibler L. 2024. https://doi.org/10.48550/arXiv.2410.18093
  25. Xu J., Reiter G., Alamo R.G. // Cryst. 2021. V. 11. № 3. P. 304. https://doi.org/10.3390/cryst11030304
  26. Охлопкова А.А., Адрианова О.А., Попов С.Н. и др. Модификация полимеров ультрадисперсными соединениями. Якутск: ЯФ Изд-ва СО РАН, 2003. 224 с.
  27. Слепцова С.А., Кириллина Ю.В., Лазарева Н.Н. и др. // Вестник СВФУ. 2015. Т. 50. № 6. С. 95.
  28. Игнатьева Л.Н., Бузник В.М. // Рос. хим. журн. 2008. Т. 52. № 3. С. 139.
  29. Казицына Л.А., Куплетская Н.Б. Применение УФ-, ИК- и ЯМР-спектроскопии в органической химии. М.: Высшая школа, 1971. 237 с.
  30. Sleptsova S.A., Okhlopkova A.A., Kapitonova Iu.V. et al. // J. Frict. Wear. 2016. V. 37. № 2. P. 129. https://doi.org/10.3103/S106836661602015X.
  31. Kapitonova I.V., Tarasova P.N., Okhlopkova A.A. et al. // Tribology Online. 2023. V. 18. № 2. P. 10. https://doi.org/10.2474/trol.18.10

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thermograms of synthesized aluminosilicates.

Download (163KB)
3. Fig. 2. X-ray diffraction patterns of sodium aluminosilicates after firing at 900°C.

Download (97KB)
4. Fig. 3. Adsorption-desorption isotherms (a) and porosimetry (b) of sodium aluminosilicates after calcination.

Download (162KB)
5. Fig. 4. Dependence of tensile strength (a), relative elongation at break (b), elastic modulus (c) and compressive stress at a relative deformation of 10% (d) on the filler content.

Download (336KB)
6. Fig. 5. Micrographs of the supramolecular structure of PTFE (a) and composites containing 2 wt.% sodium aluminosilicates (scale ×150): b – Na2Al2Si2O8, c – Na2Al2Si6O16, d – Na2Al2Si10O24.

Download (625KB)
7. Fig. 6. Dependence of wear rate (a) and friction coefficient (b) on filler content.

Download (193KB)
8. Fig. 7. IR spectra of samples with 2 wt.% filler content before (a) and after (b) friction.

Download (206KB)
9. Fig. 8. Morphology of the friction surface of PTFE (a) and composites containing 2 wt.% sodium aluminosilicate with different Si/Al ratios: b – Na2Al2Si2O8, c – Na2Al2Si6O16, d – Na2Al2Si10O24.

Download (521KB)

Copyright (c) 2025 Russian Academy of Sciences