Morphogenetic effects of long-term selection of American mink (Neogale vison Schreber, 1777) strains on characters of defensive behavior: Intra- and interspecific aspects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Since the time of Charles Darwin, the study of the mechanisms of domestication of animals as a model of rapid evolutionary transformations has been of general biological importance. Methods of Geometric morphometrics (GM) make it possible to assess the morphogenetic changes that occur during domestication. Using the experimental strains of American mink Neogale vison, selected for aggressive and tame behavior, significant differences in the centroid size (CS) and shape of the mandible were established between them. Cage non-selected and wild Canadian minks were used as controls. Selection has led to an increase in the CS of mandibles in aggressive and their decrease in tame ones. The greatest differences in the shape of mandibles were manifested between the aggressive and tame strains. The destabilization of mandible development, indirectly estimated by the volume of within-group morphospace (Vm) along the first canonical axes, turned out to be most pronounced in males and females of the tame mink strain, which is directly consistent with the theory of destabilizing selection by D. K. Belyaev. After 16–17 generations of mink selection for aggressive and tame behavior, morphogenetic effects were found, expressed in the divergence of the shape of their mandible, accompanied by destabilization of development, and reflecting the high rate of experimental domestication. The differentiation of the aggressive and tame minks by the shape of the mandibles exceeds the level of sexual differences and is comparable to the degree of morphological divergence between caged and wild Canadian individuals. It is accompanied by morphological hiatus and is formally close to the subspecific rank of intraspecific morphological differences compared with the morphological divergence of the American mink from another species – the Siberian weasel Mustela sibirica. The morphogenetic effects of American mink selection by behavior demonstrate the high adaptive and evolutionary potentials of this invasive species.

全文:

受限制的访问

作者简介

A. Vasil’ev

Institute of Plant and Animal Ecology, Ural Branch of RAS

编辑信件的主要联系方式.
Email: vag@ipae.uran.ru
俄罗斯联邦, 8 March str., 202, Yekaterinburg, 620144

M. Chibiryak

Institute of Plant and Animal Ecology, Ural Branch of RAS

Email: vag@ipae.uran.ru
俄罗斯联邦, 8 March str., 202, Yekaterinburg, 620144

M. Nekrasova

Federal Research Center Institute of Cytology and Genetics, SB RAS

Email: vag@ipae.uran.ru
俄罗斯联邦, Avenue Akad. Lavrentieva, 10, Novosibirsk, 630090

M. Stepanova

Federal Research Center Institute of Cytology and Genetics, SB RAS; Novosibirsk State Agrarian University

Email: vag@ipae.uran.ru
俄罗斯联邦, Avenue Akad. Lavrentieva, 10, Novosibirsk, 630090; Dobrolyubova str., 160, Novosibirsk, 630039

O. Trapezov

Federal Research Center Institute of Cytology and Genetics, SB RAS; Novosibirsk State University

Email: trapezov@bionet.nsc.ru
俄罗斯联邦, Avenue Akad. Lavrentieva, 10, Novosibirsk, 630090; Pirogova str., 1, Novosibirsk, 630090 Russia

参考

  1. Беляев Д.К., 1972. Генетические аспекты доместикации животных // Проблемы доместикации животных и растений. М.: Наука. С. 39–45.
  2. Беляев Д.К., Трут Л.Н., 1989. Конвергентный характер формообразования и концепция дестабилизирующего отбора // Вавиловское наследие в современной биологии. М.: Наука. С. 155–169.
  3. Васильев А.Г., 2005. Эпигенетические основы фенетики: на пути к популяционной мерономии. Екатеринбург: Академкнига. 640 с.
  4. Данилов П.И., Туманов И.Л., 1976. Куньи Се-веро-Запада СССР. Л.: Наука. 256 с.
  5. Дгебуадзе Ю.Ю., 2014. Чужеродные виды в Голарктике: некоторые результаты и перспективы исследований // Росс. журн. биол. инвазий. № 1. С. 2–8.
  6. Кораблев М.П., Кораблев Н.П., Кораблев П.Н., 2013. Популяционные аспекты полового диморфизма в гильдии куньих Mustelidae, на примере четырех видов: Mustela lutreola, Neovison vison, Mustela putorius, Martes martes // Изв. РАН. Сер. биол. № 1. С. 70–78.
  7. Кораблев Н.П., Кораблев П.Н., Кораблев М.П., 2018. Микроэволюционные процессы в популяциях транслоцированных видов: евроазиатский бобр, енотовидная собака, американская норка. М.: Т-во науч. изд. КМК. 452 с.
  8. Майр Э., 1971. Принципы зоологической систематики. М.: Мир. 454 с.
  9. Павлинов И.Я., Микешина Н.Г., 2002. Принципы и методы геометрической морфометрии // Журн. общ. биологии. Т. 63. № 6. С. 473–493.
  10. Россолимо О.Л., Павлинов И.Я., 1974. Половые различия в развитии, размерах и пропорциях черепа лесной куницы Martes martes (Mammalia, Mustelidae) // Бюл. МОИП. Отд. биол. Т. 79. № 6. С. 23–35.
  11. Трапезов О.В., 1987. Селекционное преобразование оборонительной реакции на человека у американской норки // Генетика. Т. 23. № 6. С. 1120–1127.
  12. Трапезов О.В., 2012. Новые окрасочные мутации у американской норки (Mustelavison), наблюдаемые в процессе ее экспериментальной доместикации. Автореф. дис. … док. биол. наук. Новосибирск: ИЦиГ СО РАН. 34 с.
  13. Трут Л.Н., 1981. Генетика и феногенетика доместикационного поведения // Вопросы общей генетики / Под ред. Алтухова Ю.П. М.: Наука. С. 323–332.
  14. Трут Л.Н., Дзержинский Ф.Я., Никольский В.С., 1991. Компонентный анализ краниологических признаков серебристо-черных лисиц (Vulpes fulvus Desm.) и их изменений, возникающих при доместикации // Генетика. Т. 27. № 8. С. 1440–1449.
  15. Трут Л.Н., Харламова А.В., Пилипенко А.С., Гербек Ю.Э., 2021. Эксперимент по доместикации лисиц и эволюция собак с позиции современных молекулярно-генетических и археологических данных // Генетика. Т. 57. № 7. С. 767–785. https://doi.org/10.31857/S0016675821070146
  16. Харламова А.В., Фалеев В.И., Трапезов О.В., 2000. Влияние селекции по поведению на краниологические признаки американской норки (Mustela vison) // Генетика. Т. 36. № 6. С. 823–828.
  17. Abramov A.V., Tumanov I.L., 2003. Sexual dimorphism in the skull of the European mink Mustela lutreola from NW part of Russia // Acta Theriol. V. 48. P. 239–246.
  18. Badyaev A.V., 2014. Epigenetic resolution of the ‘curse of complexity’ in adaptive evolution of complex traits // J. Physiol. V. 592. № 11. P. 2251–2260.
  19. Belyaev D.K., 1979. Destabilizing selection as a factor in domestication // J. Hered. V. 70. № 5. P. 301–308.
  20. Blonder B., 2018. Hypervolume concepts in niche- and trait-based ecology // Ecography. V. 41. P. 1441–1455.
  21. Blonder B., 2019. Hypervolume. R package version 1.0.1. https://cran.r-project.org/package=hypervolume
  22. Bošković A., Rando O.J., 2018. Transgenerational epigenetic inheritance // Ann. Rev. Genet. V. 52. P. 21–41.
  23. Burggren W., 2016. Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives // Biology. V. 5. № 24. P. 2–22.
  24. Cohen J., 1992. A power primer // Psychol. Bull. V. 112. № 1. P. 155–159.
  25. Darwin C., 1868. Variation of Plants and Animals under Domestication. L.: J. Murray. 486 p.
  26. Donelan S.C., Hellmann J.K., Bell A.M., et al., 2020. Transgenerational plasticity in human-altered environments // Trends Ecol. Evol. V. 35. № 2. P. 115–124.
  27. Drake A.G., Klingenberg C.P., 2010. Large-scale diversification of skull shape in domestic dogs: disparity and modularity // Am. Nat. V. 175. № 3. P. 289–301.
  28. Efron B., Tibshirani R., 1986. Bootstrap methods for standard errors. Confidence intervals and other measures of statistical accuracy // Stat. Sci. V. 1. P. 54–77.
  29. Gálvez-López E., Cox P.G., 2022. Mandible shape variation and feeding biomechanics in minks // Sci. Rep. V. 12. № 4997. P. 1–11. https://doi.org/10.1038/s41598-022-08754-4
  30. Gálvez-López E., Kilbourne B., Cox P.G., 2022. Cranial shape variation in mink: Separating two highly similar species // J. Anat. V. 240. № 2. P. 210–225. https://doi.org/10.1111/joa.13554
  31. Hammer Q., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological Statistics software package for education and data analysis // Palaeontol. Electron. V. 4. № 1. P. 1–9.
  32. Jablonka E., Raz G., 2009. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution // Qvart. Rev. Biol. V. 84. P. 131–176.
  33. Jensen P., 2013. Transgenerational epigenetic effects on animal behaviour // Prog. Biophys. Mol. Biol. V. 113. P. 447–454.
  34. Kaiser S., Hennessy M.B., Sachser N., 2015. Domestication affects the structure, development and stability of biobehavioural profiles // Front. Zool. V. 12. Suppl. 1. Art. S19. http://www.frontiersinzoology.com/content/12/S1/S19
  35. Klingenberg CP., 2011. MorphoJ: An integrated software package for geometric morphometrics // Mol. Ecol. Resour. V. 11. P. 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  36. Kukekova A.V., Johnson J.L., Xiang X., et al., 2018. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours // Nat. Ecol. Evol. V. 2. P. 1479–1491. https://doi.org/10.1038/s41559-018-0611-6
  37. Lord K.A., Larson G., Coppinger R.P., Karlsson E.K., 2020. The history of farm foxes undermines the animal domestication syndrome // Trends Ecol. Evol. V. 35. № 2. P. 125–135. https://doi.org/10.1016/j.tree.2019.10.011
  38. Loy A., Spinosi O., Cardini R., 2004. Cranial morphology of Martes foina and M. martes (Mammalia, Carnivora, Mustelidae): The role of size and shape in sexual dimorphism and interspecific differentiation // Italian J. Zool. V. 71. P. 27–35.
  39. Lynch J.M., Hayden T.J., 1995. Genetic influences on cranial form: variation among ranch and feral American mink Mustela vison (Mammalia: Mustelidae) // Biol. J. Linn. Soc. V. 55. P. 293–307.
  40. Maran T., Kruuk H., MacDonald D.W., et al., 1998. Diet of two species of mink in Estonia: Displacement of Mustela lutreola by M. vison // J. Zool. V. 245. P. 218–222.
  41. Palmer A.R., 1994. Fluctuating asymmetry analyses: A primer // Developmental Instability: Its Origins and Implications / Ed. Markow T.A. Dordrecht: Kluwer. P. 335–364.
  42. Põdra M., Gómez A., Palazón S., 2013. Do American mink kill European mink? Cautionary message for future recovery efforts // Eur. J. Wildlife Res. V. 59. P. 431–440.
  43. Rohlf F.J., 2017a. TpsUtil, file utility program, version 1.74. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  44. Rohlf F.J., 2017b. TpsDig2, digitize landmarks and outlines, version 2.30. Department of Ecology and Evolution, State Univ. of New York at Stony Brook (program).
  45. Rohlf F.J., Slice D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks // Syst. Biol. V. 39. № 1. P. 40–59.
  46. Sheets H.D., Zelditch M.L., 2013. Studying ontogenetic trajectories using resampling methods and landmark data // Hystrix. Italian J. Mammal. V. 24. № 1. P. 67–73.
  47. Sidorovich V.E., Kruuk H., MacDonald D.W., 1999. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe // J. Zool. V. 248. P. 521–527.
  48. Singh N., Albert F.W., Plyusnina I., et al., 2017. Facial shape differences between rats selected for tame and aggressive behaviors // PLoS One. V. 12. № 4. Art. e0175043. https://doi.org/10.1371/journal.pone.0175043
  49. Stevens R.T., Kennedy M.L., 2006. Geographic variation in body size of American mink (Mustela vison) // Mammalia. V. 70. № 1–2. P. 145–152.
  50. Tamlin A.L., Bowman J., Hackett D.F., 2009. Separating wild from domestic American mink Neovison vison based on skull morphometrics // Wildlife Biol. V. 15. № 3. Р. 266–277.
  51. Vasil’ev A.G., 2021. The concept of morphoniche in evolutionary ecology // Russ. J. Ecol. V. 52. № 3. P. 173–187.
  52. Wilkins A.S., Wrangham R.W., Fitch W.T., 2014. The “domestication syndrome” in mammals: A unified explanation based on neural crest cell behavior and genetics // Genetics. V. 197. № 3. P. 795–808. https://doi.org/10.1534/genetics.114.165423
  53. Zakharov V.M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations // Acta Zool. Fenn. V. 191. P. 7–30.
  54. Zelditch M.L., Swiderski D.L., Sheets H.D., Fink W.L., 2004. Geometric Morphometrics for Biologists: A Primer. N.-Y.: Elsevier Acad. Press. 437 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Localization of landmark marks – LM (1–23), semi-landmarks – SM (black circles) and scaling landmarks (24–25) on the photograph of the American mink mandible from the buccal side.

下载 (141KB)
3. Fig. 2. Comparison of the average centroid sizes CS (taking into account standard errors ±SE) between males (1) and females (2) of the strains of aggressive, unselected and tame caged American minks.

下载 (90KB)
4. Fig. 3. Results of the linear discriminant analysis (LDA) of the Procrustes coordinates characterizing the variability of the mandible shape in the samples of males (1) and females (2) of the American mink without taking into account their lineage. The contour configurations of the mandibles (outlines) embedded in the splines of the deformation lattices correspond to the histograms of the distributions of the compared samples.

下载 (136KB)
5. Fig. 4. Results of the canonical analysis (CVA) of the Procrustes coordinates characterizing the variability of the mandible shape in the strains of aggressive (1), unselected (2), and tame (3) American minks. The outline configurations of the mandibles correspond to the minimum and maximum values of the ordinates along the canonical variables in this and subsequent figures (exaggeration coefficient – 3.0).

下载 (235KB)
6. Fig. 5. Results of the canonical analysis of the Procrustes coordinates characterizing the variability of the mandible shape in males (odd numbers) and females (even numbers) of aggressive (1, 2), unselected (3, 4), and tame (5, 6) American minks. Arrows indicate the directions of intergroup variability corresponding to the factors “strain” and “sex”.

下载 (270KB)
7. Fig. 6. Results of canonical analysis of Procrustes coordinates characterizing the variability of the lower jaw shape in males of cell lines of aggressive (A), unselected (N) and tame (T) American minks, the wild Canadian population (Can) of this species and another species – kolinsky (Msib).

下载 (189KB)
8. Fig. 7. Results of cluster analysis (UPGMA) of the matrix of Procrustes distances (Pd) between samples of males of cell lines of aggressive, unselected and tame American minks, the wild Canadian population of this species and another species – kolinsky. The branching nodes indicate the values of statistical support (%).

下载 (128KB)

版权所有 © Russian Academy of Sciences, 2024