On Ranks of Matrices over Noncommutative Domains

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider matrices with entries in some domain, i.e., in a ring, not necessarily commutative, not containing non-trivial zero divisors. The concepts of the row rank and the column rank are discussed. (Coefficients of linear dependencies belong to the domain ; left coefficients are used for rows, right coefficients for columns.) Assuming that the domain satisfies the Ore conditions, i.e., the existence of non-zero left and right common multiples for arbitrary non-zero elements, it is proven that these row and column ranks are equal, which allows us to speak about the rank of a matrix without specifying which rank (row or column) is meant. In fact, the existence of non-zero left and right common multiples for arbitrary non-zero elements of  is a necessary and sufficient condition for the equality of the row and column ranks of an arbitrary matrix over. An algorithm for calculating the rank of a given matrix is proposed. Our Maple implementation of this algorithm covers the domains of differential and (-)difference operators, both ordinary and with partial derivatives and differences.

作者简介

S. Abramov

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Email: sergeyabramov@mail.ru
Moscow, Russia

M. Petkovšek

Faculty of Mathematics and Physics, University of Ljubljana

Email: Marko.Petkovsek@fmf.uni-lj.si
Ljubljana, Slovenia

A. Ryabenko

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: anna.ryabenko@gmail.com
Moscow, Russia

参考

  1. Beckermann B., Cheng H., Labahn G. Fraction-free row reduction of matrices of Ore polynomials // J. Symbolic Comput. 2006. V. 41. P. 513–543.
  2. Ore O. Theory of non-commutative polynomials // Ann. of Math. (2). 1933. V. 34. P. 480–508.
  3. Bronstein M., Petkovšek M. An introduction to pseudo-linear algebra // Theoret. Comput. Sci. 1996. V. 157. P. 3–33.
  4. Кон П.М. Свободные кольца и их связи. М.: Мир, 1975.
  5. Лопатинский Я.Б. Теория общих граничных задач. Киев: Наукова Думка, 1984.
  6. Chyzak F., Salvy B. Non-commutative elimination in Ore algebras proves multivariate identities // J. Symbolic Comput. 1998. V. 26. P. 187–227.
  7. Ore O. Linear equations in non-commutative fields // Ann. of Math. (2). 1931. V. 32. P. 463–477.
  8. Abramov S., Petkovšek M., Ryabenko A., On linear dependence of rows and columns in matrices over non-commutative domains // Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ACM. 2022. P. 39–43.

补充文件

附件文件
动作
1. JATS XML

版权所有 © S.A. Abramov, M. Petkovšek, A.A. Ryabenko, 2023