INVERSE PROBLEM FOR THE QUASILINEAR WAVE EQUATION

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A quasilinear hyperbolic equation is considered whose principal part is a purely wave operator and the lower order part consists of two nonlinear terms with coefficients and compactly supported in a ball. We study the direct problem of a plane wave scattered by a heterogeneity localized in and the inverse problem of recovering the coefficients and from solutions of direct problems with a varying incident wave direction. An asymptotic expansion of the solution to the direct problem near the front of the traveling plane wave is presented, based on which the inverse problem is reduced to two linear problems to be solved sequentially. Namely, the problem of determining the coefficient is reduced to a classical X-ray tomography problem, while the problem of determining the coefficient is reduced to a more complicated problem of integral geometry. The last problem, which is new, is to find a function from its integrals with a given weight along straight lines. This problem is investigated, and a uniqueness and stability theorem for its solution is proved.

Sobre autores

V. Romanov

Sobolev Institute of Mathematics, SB RAS

Email: romanov@math.nsc.ru
Novosibirsk, Russia

Bibliografia

  1. Kurylev Y., Lassas M., Uhlmann G. Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations // Invent. Math. 2018. V. 212. P. 781–857.
  2. Lassas M., Uhlmann G., Wang Y. Inverse problems for semilinear wave equations on Lorentzian manifolds // Commun. Math. Phys. 2018. V. 360. P. 555–609.
  3. Lassas M. Inverse problems for linear and non-linear hyperbolic equations // Proc. Internat. Congress Math. 2018. V. 3. P. 3739–3760.
  4. Hintz P., Uhlmann G. Reconstruction of Lorentzian manifolds from boundary light observation sets // Internat. Math. Res. Notices. 2019. V. 22. P. 6949–6987.
  5. Hintz P., Uhlmann G., Zhai J. An inverse boundary value problem for a semilinear wave equation on Lorentzian manifolds // Internat. Math. Res. Notices. 2022. V. 17. P. 13181–13211.
  6. Uhlmann G., Zhai J. On an inverse boundary value problem for a nonlinear elastic wave equation // J. Math. Pures Appl. 2021. V. 153. P. 114–136.
  7. Wang Y., Zhou T. Inverse problems for quadratic derivative nonlinear wave equations // Commun. Partial Diff. Equat. 2019. V. 44. № 11. P. 1140–1158.
  8. Barreto A.S. Interactions of semilinear progressing waves in two or more space dimensions // Inverse Probl. Imaging. 2020. V. 14. № 6. P. 1057–1105.
  9. Barreto A.S., Stefanov P. Recovery of a cubic non-linearity in the wave equation in the weakly nonlinear regime // Commun. Math. Phys. 2022. V. 392. P. 25–53.
  10. Lassas M., Liimatainen T., Potenciano-Machado L., Tyni T. Uniqueness and stability of an inverse problem for a semi-linear wave equation // J. Diff. Equat. 2022. V. 337. P. 395–435.
  11. Barreto A.S., Uhlmann G., Wang Y. Inverse scattering for critical semilinear wave equations // Pure and Appl. Analys. 2022. V. 4. № 2. P. 191–223.
  12. Романов В.Г. Одномерная обратная задача для нелинейных ур-ний электродинамики // Дифференц. ур-ния. 2023. Т. 59. № 10. С. 1397–1411.
  13. Романов В.Г. Обратная задача для волнового уравнения с нелинейным поглощением // Сиб. матем. журн. 2023. Т. 64. № 3. С. 635–652.
  14. Романов В.Г. Оценка устойчивости в обратной задаче для нелинейного гиперболического уравнения // Сиб. матем. журн. 2024. Т. 65. № 3. С. 560–576.
  15. Романов В.Г. Обратная задача для волнового уравнения с двумя нелинейными членами // Дифференц. ур-ния. 2024. Т. 60. № 4. С. 508–520.
  16. Romanov V.G., Bugueva T.V. An inverse problem for a nonlinear hyperbolic equation // Eurasian J. of Math. and Comp. Appl. 2024. V. 12. № 2. P. 134–154.
  17. Romanov V.G., Bugueva T.V. An one-dimensional inverse problem for the wave equation // Eurasian J. of Math. and Comp. Appl. 2024. V. 12. № 3. P. 135–162.
  18. Романов В.Г. Обратная задача для квазилинейного волнового уравнения // Сириус. Матем. журн. 2024. Т. 1. № 1. С. 105–112.
  19. Романов В.Г. Обратная задача для нелинейного уравнения переноса // Сиб. матем. журн. 2024. Т. 65. № 5. С. 1022–1028.
  20. Radon J. Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten // Berichte Sachsische Akademie der Wissenschaften. 1917. Bande 29. P. 262–277.
  21. Cormack A.M. Representation of a function by its line integrals, with some radiological applications // J. of Appl. Phys. 1963. V. 34. P. 2722–2727.
  22. Cormack A.M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971–1980. World Sci. Publ. Co, 1992. P. 551–563.
  23. Deans S.R. The Radon Transform and Some of Its Applications. New York: John Wiley & Sons, 1983. 289 p.
  24. Тихонов А.Н., Арсенин В.Я., Тихонов А.А. Математические задачи компьютерной томографии. М.: Физматлит, 1987. 160 с.
  25. Hammerpep Ф. Математические аспекты компьютерной томографии. М.: Мир, 1990. 288 с.
  26. Мухометов Р.Г. Задача восстановления двумерной римановой метрики и интегральная геометрия // Докл. AH CCCP. 1977. Т. 232. № 1. С. 32–35.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025