СРАВНЕНИЕ ИНТЕРПОЛЯЦИОННОГО И МОЗАИЧНО-СКЕЛЕТОННОГО МЕТОДОВ ДЛЯ РЕШЕНИЯ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ СО СВЕРТОЧНЫМ ЯДРОМ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Сравниваются интерполяционный и мозаично-скелетонный методы решения задачи о потенциальном обтекании двумерной пластины. Они сжимают плотную матрицу линейной системы, возникающую при решении методом коллокаций на неравномерной сетке. Первый метод основан на быстром преобразовании Фурье и линейной интерполяции со вспомогательной равномерной сеткой. Второй – на блочно-малоранговой аппроксимации матрицы. Оба подхода демонстрируют эффективность по времени и памяти, но выделяют различные структуры в матрице, что влияет на решение линейной системы. Для использованных реализаций методов мозаично-скелетонный метод решает систему быстрее интерполяционного, но потребляет больше памяти, а время его работы гораздо заметнее растет с увеличением размера системы.

Об авторах

А. О Гладков

Сколковский институт науки и технологий

Email: a.o.gladkov@yandex.ru
Москва, Россия

Б. И Валиахметов

Московский государственный университет им. М.В. Ломоносова

Email: valiahmetovbulat@mail.ru
Москва, Россия

Е. Е Тыртышников

Институт вычислительной математики им. Г.И. Мариука РАН

Email: eugene.tyrtyshnikov@gmail.com
Москва, Россия

А. Б Самохин

МИРЭА – Российский технологический университет

Email: absamokhin@yandex.ru
Москва, Россия

Список литературы

  1. Самохин А.Б. Интегральные уравнения и итерационные методы в электромагнитном рассеянии. Радио и связь, 1998.
  2. Colton D., Kress R. Inverse acoustic and electromagnetic scattering theory. Berlin: Springer-Verlag, 1992.
  3. Мокряков В.В. Применение метода мультипольного разложения для расчета напряженного состояния в бесконечной упругой плоскости, содержащей несколько круговых отверстий // Вычисл. механика сплошных сред. 2012. Т. 5. № 2. С. 168—177.
  4. Белоцерковский С.М., Лифанов Н.К. Численные методы в сингулярных интегральных уравнениях. М.: Наука, 1985.
  5. Самохин А.Б., Тыртышинков Е.Е. Численный метод решения объемных интегральных уравнений на неравномерной сетке // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 5. С. 878—884.
  6. Нечепуренко Ю.М. Быстрые устойчивые алгоритмы для класса линейных дискретных преобразований // Вычисл. процессы и системы. Т. 5. М.: Наука, 1987. С. 292—301.
  7. Туглубинко Ещепе. Мosaic-skeleton approximations // Calcolo. 1996. V. 33. P. 47—57.
  8. Горейнов С.А., Замарашкин Н.Л., Тыртышинков Е.Е. Псев- досвещенные аппроксимации матриц // Докл. АН. 1995. Т. 343. № 2. С. 151—152.
  9. Туглубинко Ещепе. Incomplete cross approximation in the mosaic-skeleton method // Computing. 2000. V. 64. P. 367—380.
  10. Оселедец И.В., Тыртышинков Е.Е. Приближенное обращение матриц при решении гиперсингулярного интегрального уравнения // Ж. вычисл. матем. и матем. физ. 2005. Т. 45. № 2. С. 315—326.
  11. Лифанов Н.К., Тыртышинков Е.Е. Теплицевы матрицы и сингулярные интегральные уравнения // Вычисл. процессы и системы. Т. 7. М.: Наука, 1990. С. 94—278.
  12. Лифанов Н.К., Полтавский Л.Н. Обобщенные операторы Фурье и их применение к обоснованию некоторых численных методов в аэродинамике // Матем. сб. 1992. Т. 5. С. 79—114.
  13. Voevodin V.V. On a method of reducing the matrix order while solving integral equations. Numerical Analysis on FORTRAN. Moscow University Press, 1979. P. 21—26.
  14. Gladkov A. Integral equation solver. 2024. URL: https://github.com/agladckov/integral_equation_solver
  15. Vailakhmetov B., Zhelikov D. MosaicSkeleton package (MSk), 2017. URL: https://gitlab.com/bulatral/mosaic-skeleton.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025