Determination of position and size of non-flaws at albedo flaw detection
- Autores: Zhuravskiy E.E.1, Belkin D.S.1, Kapranov B.I.1, Chakhlov S.V.1
-
Afiliações:
- Tomsk Polytechnic University
- Edição: Nº 4 (2024)
- Páginas: 38-44
- Seção: Radiation methods
- URL: https://permmedjournal.ru/0130-3082/article/view/649264
- DOI: https://doi.org/10.31857/S0130308224040043
- ID: 649264
Citar
Resumo
In this article the methods of determining the position and size of non-flaws in albedo flaw detection are considered. Analytical and numerical solutions of the problem of determining the location of non-flaws on the basis of known parameters of the collimation system are shown. The dependence of the location of the flaw on the parameters of the collimation system is shown. It is proposed to determine not the true size of the flaw, but its equivalent area, similar to ultrasonic flaw detection.
Sobre autores
E. Zhuravskiy
Tomsk Polytechnic University
Autor responsável pela correspondência
Email: zhuravskiy@tpu.ru
Rússia, Tomsk, Lenin Ave., 30, 634050
D. Belkin
Tomsk Polytechnic University
Email: Belkin@tpu.ru
Rússia, Tomsk, Lenin Ave., 30, 634050
B. Kapranov
Tomsk Polytechnic University
Email: introbob@mail.ru
Rússia, Tomsk, Lenin Ave., 30, 634050
S. Chakhlov
Tomsk Polytechnic University
Email: chakhlov@tpu.ru
Rússia, Tomsk, Lenin Ave., 30, 634050
Bibliografia
- Abdul-Majid S., Balamesh A., Othmany D.A., Alassiaa A., Al-Huraibi H. Corrosion Imaging and Thickness Determination Using Micro-Curie Radiation Sources Based on Gamma-Ray Backscattering: Experiments and MCNP Simulation // Research in Nondestructive Evaluation. 2015. V. 26. No. 1. P. 43—59.
- Abdul-Majid S., Balamesh A. Underwater Pipe Wall Thickness Measurements by Gamma Backscattering (Retrieved on Aug. 2016. V. 30) // Applied Radiation and Isotopes. 2010. V. 68. No. 12. P. 2181—2188.
- Margret M., Menaka M., Subramanian V., Baskaran R., Venkatraman B. Non-destructive inspection of hidden corrosion through Compton backscattering technique // Radiation Physics and Chemistry. 2018. V. 152. P. 158—164.
- Balamesh A., Salloum M., Abdul-Majid S. Feasibility of a New Moving Collimator for Industrial Backscatter Imaging // Research in Nondestructive Evaluation. 2018. V. 29. No. 3. P. 143—155.
- Margret M., Subramanian V., Baskaran R., Venkatraman B. Detection of scales and its thickness determination in industrial pipes using Compton backscattering system // Review of Scientific Instruments. 2018. V. 89. No. 11. P. 113—117.
- Sharma A., Sandhu B. S., Singh B. Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline // Applied Radiation and Isotopes. 2010. V. 68. No. 12. P. 2181—2188.
- Margret M., Menaka M., Venkatraman B., Chandrasekaran S. Compton back scatter imaging for mild steel rebar detection and depth characterization embedded in concrete // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015. V. 343. P. 77—82.
- Benitez D. S., Quek S., Gaydecki P., Torres V. A preliminary magneto-inductive sensor system for real-time imaging of steel reinforcing bars embedded within concrete // IEEE Transactions on Instrumentation and Measurement. 2008. V. 57. No. 11. P. 2437—2442.
- Baek S., Xue W., Feng M.Q., Kwon S. Nondestructive corrosion detection in RC through integrated heat induction and IR thermography // Journal of Nondestructive Evaluation. 2012. V. 31. No. 2. P. 181—190.
- Yamazaki K., Ishikawa K., Haga A., Muramatsu K., Kobayashi K., Sasaki H. Impedance measurement using a resonance circuit for detecting steel bars and cables inside pliable plastic conduit tubes buried in concrete walls and slabs // IEEE Transactions on Magnetics. 2010. V. 46. No. 6. P. 1963—1966.
- Yamazaki K., Ishikawa K., Haga A., Muramatsu K., Kobayashi K., Sasaki H. Monitoring corrosion of rebar embedded in mortar using high-frequency guided ultrasonic waves // Journal of Engineering Mechanics. 2009. V. 135. No. 1. P. 9—19.
- Fan Y., Ji X., Cai P., Lu Q. Non-destructive detection of rebar buried in a reinforced concrete Wall with wireless passive SAW sensor // Measurement Science Review. 2013. V. 13. No. 1. P. 25—28.
- Kolkoori S., Wrobel N., Zscherpel U., Ewert U. A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials // NDT&E International. 2015. V. 70. P. 41—52.
- O’Flynn D., Crews C., Fox N., Allen B.P., Sammons M., Speller R.D. X-ray backscatter sensing of defects in carbon fibre composite materials // Advanced Photon Counting Techniques XI. International Society for Optics and Photonics. 2017. V. 10212. P. 102120R.
- Kolkoori S., Wrobel N., Osterloh K., Zscherpel U., Ewert U. Novel X-ray backscatter technique for detection of dangerous materials: application to aviation and port security // Journal of Instrumentation. 2013. V. 8. No. 9. P. P09017.
- Shinji Nomura, Kazunori Tejima, Ikuo Wakamoto. Scattered X-ray type defect detector, and X-ray detector. JP. Patent No. 2001208705A. 03 August 2001.
- Ignatiev N.G., Orlov I.E., Ergashev D.E. Experimental studies of scintillation detectors based on WLS fibers // Instruments and Experimental Techniques. 2016. V. 59. No. 6. P. 789—793.
Arquivos suplementares
