Comparative Analysis of Experimental Methods for Determining the Curie Temperature of Ferrite Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic phase transformations in the Curie temperature region of a ferrite material with the composition Ni0,4Zn0,6Fe2O4 were studied using thermomagnetometric analysis and methods for recording the temperature dependence of the initial magnetic permeability μ0(T) and electrical resistivity ρ(T). The description of the equipment utilized and the key characteristics of the application of the experimental methods under review are provided. During thermomagnetometry at the cooling stage, it was found that the temperature at which the material completes the transition to the ferrimagnetic state corresponds to the inflection point temperature on the µ0(T) curve and the breakpoint on the lnρ(T) plot. The established interaction between the parameters of transients can be useful for more correct determination of the Curie temperature in ferrites.

Full Text

Restricted Access

About the authors

S. A. Bobuyok

National Research Tomsk Polytechnic University

Author for correspondence.
Email: bobuyok@tpu.ru
Russian Federation, Tomsk

A. P. Surzhikov

National Research Tomsk Polytechnic University

Email: bobuyok@tpu.ru
Russian Federation, Tomsk

E. V. Nikolaev

National Research Tomsk Polytechnic University

Email: bobuyok@tpu.ru
Russian Federation, Tomsk

A. V. Malyshev

National Research Tomsk Polytechnic University

Email: bobuyok@tpu.ru
Russian Federation, Tomsk

E. N. Lysenko

National Research Tomsk Polytechnic University

Email: bobuyok@tpu.ru
Russian Federation, Tomsk

References

  1. Lathiya P., Kreuzer M., Wang J. RF complex permeability spectra of Ni-Cu-Zn ferrites prepared under different applied hydraulic pressures and durations for wireless power transfer (WPT) applications // J. Magn. Magn. Mat. 2020. V. 499. P. 166273. https://doi.org/10.1016/j.jmmm.2019.166273
  2. Shetty C., Shastrimath V. V.D. Pure and barium substituted bismuth ferrite as ethanol gas sensor // Surf. Interfaces. 2024. V. 46. P. 103942. https://doi.org/10.1016/j.surfin.2024.103942
  3. Zulqarnain M., Ali S.S., Yaqub M.A., Hira U., Khan M.I., Aldulmani Sh.A., Ikram R., Qadir R. Synthesis, structural and opto-electrical/electronic trends of Zn/Co substituted spinel ferrites for energy conservation and supercapacitor applications // Mater. Chem. Phys. 2024. V. 322. P. 129567. https://doi.org/10.1016/j.matchemphys.2024.129567
  4. Randoshkin V.V. Pulsed remagnetization of ferrite-garnet films. I. Even magnetic field // Defectoskopiya. 1996. No. 1. P. 77—95. EDN MOVTMV.
  5. Reutov Yu.Ya. Optimization of magnetizing device made of high-coercive material // Defectoskopiya. 1997. No. 8. P. 68—72. EDN MOYNDD.
  6. Dhar D., Ghosh S., Mukherjee S., Dhara S., Chatterjee J., Das S. Assessment of chitosan-coated zinc cobalt ferrite nanoparticle as a multifunctional theranostic platform facilitating pH-sensitive drug delivery and OCT image contrast enhancement // Int. J. Pharm. 2024. V. 654. P. 123999. https://doi.org/10.1016/j.ijpharm.2024.123999
  7. Li H., Wang J., Lv S., Chen Ch., Luo H., Wu Q., Zhang Q., Zheng H., Zheng L. Curie temperature and magnetic permeability regulation of Cr—Mg co-doped NiCuZn ferrite for tumor hyperthermia // Ceram. Int. 2024. V. 50. No. 14. P. 25925. https://doi.org/10.1016/j.ceramint.2024.04.335
  8. Miftahu G.I., Hafeez Y.H., Mohammed J., Abdussalam B.S., Chifu E.N. A review on recent development in the spinel ferrites-based materials for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting // Appl. Surf. Sci. Adv. 2023. V. 18. P. 100468. https://doi.org/10.1016/j.apsadv.2023.100468
  9. Yakubu M., Hafeez Y.H., Mohammed J., Abdussalam B.S., Chifu E.N., Miftahu G.I. Hydrogen production via photocatalytic water splitting using spinel ferrite-based photocatalysts: Recent and future perspectives // Next Energy. 2024. V. 4. P. 100145. https://doi.org/10.1016/j.nxener.2024.100145
  10. Kostin V.N., Sazhina E.Yu., Sergeev I.V. Quality Control of Ni-Zn-Ferrites // Defektoskopiya. 1997. V 7. P. 21—24. EDN: MOYZBN.
  11. Wilhelmy S., Zimare A., Zhang Q., Rettenmayr M., Lippmann S. Measurement of the Curie temperature based on temperature dependent thermal properties // Int. Commun. Heat Mass Transf. 2021. V. 124. P. 105239. https://doi.org/10.1016/j.icheatmasstransfer.2021.105239
  12. Vlasák G., Janičkovič D., Švec P. Magnetostrictions and Curie temperature measurements of (Fe—Co)91−xMo8Cu1Bx alloys with varying Co/Fe ratio // J. Magn. Magn. Mat. 2008. V. 320. No. 20. P. e754–e757. https://doi.org/10.1016/j.jmmm.2008.04.172
  13. Nagy I., Pál L. Thermoelectric Power and Electrical Resistivity of Some Ni-Based Alloys Near the Curie Point // J. Magn. Magn. Mat. 1973. V. 10. No. 1. P. 916—920. https://doi.org/10.1063/1.2947053
  14. Nishant K., Singh R.K., Sunil K., Prem K. Tuning in optical, magnetic and Curie temperature behaviour of nickel ferrite by substitution of monovalent K+1 ion of Ni0.8K0.2Fe2O4 nanomaterials for multifunctional applications // Physica B Condens. Matter. 2021. V. 606. P. 412797. https://doi.org/10.1016/j.physb.2020.412797
  15. Chen D., Harward I., Baptist J., Goldman S., Celinski Z. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method // J. Magn. Magn. Mat. 2015. V. 395. P. 350—353. https://doi.org/10.1016/j.jmmm.2015.07.076
  16. Satyapal H.K., Singh R.K., Nishant K., Sharma S. Low temperature synthesis and influence of rare earth Nd3+ substitution on the structural, magnetic behaviour of M-type barium hexa ferrite nanomaterials // Mater. Today Proc. 2020. V. 28. No. 1. P. 234—240. https://doi.org/10.1016/j.matpr.2020.01.590
  17. Xu J., Zheng X., Xi L., Kan X., Bao B., Ma T., Zang Y., Wang D., Gao Y., Xu J., Yin W., Shen B., Wang S. Significant enhancement of magnetocaloric effects via tuning Curie temperature and magnetic anisotropy in rare-earth based compounds // Appl. Mater. Today. 2023. V. 35. P. 101982. https://doi.org/10.1016/j.apmt.2023.101982
  18. Belomyttsev M.Iu., Kuz’ko E.I., Prokof’ev P.A. Ispol’zovanie magnitometricheskogo metoda dlia issledovaniia ferritno-martensitnykh stalei // Zavodskaia laboratoriia. Diagnostika materialov. 2017. V. 83. № 11. P. 41—46. EDN: ZQZYPJ
  19. Naiden E.P., Zhuravlev V.A., Susliaev V.I., Minin R.V., Itin V.I., Korovin E.U. Parametry struktury i magnitnye svoistva poluchennykh metodom svs kobal’t soderzhashchikh geksaferritov sistemy ME2W // Izvestiia vuzov. Fizika. 2010. V. 53. № 9. S. 87—95. EDN: MWKJJR.
  20. Badelin A.G., Karpasiuk V.K., Merkulov D.I., Eremina R.M., Iatsyk I.V., Shestakov A.V., Estemirova S.H. Vliianie dopirovaniia zhelezom na strukturnye, magnitnye i elektricheskie kharakteristiki manganitov sistemy La0,7Sr0,3Mn0,9Zn0,1-xFexO3 (0 ≤ x ≤ 0,1) // Perspektivnye materialy. 2019. V 11. S. 49—58. EDN: OFVSJZ. https://doi.org/10.30791/1028-978X-2019-11-49-58
  21. Tian F., Zhao Q., Guo J., Zhang Y., Chang T., Zhang R., Adil M., Zhou C., Cao K., Yang S. The spin glass and zero-field cooling exchange bias effect observed above the curie temperature in Ni2MnSb polycrystalline Heusler alloy // Scr. Mater. 2024. V. 245. P. 116055. https://doi.org/10.1016/j.scriptamat.2024.116055
  22. Warne S.St.J., Gallagher P.K. Thermomagnetometry // Thermochim. Acta. 1987. V. 110. P. 269—279. https://doi.org/10.1016/0040-6031(87)88235-7
  23. Yu X., Rahman M.M., Yang R., Wu C., Bouyahya A., Zhang W. Effect of Al3+ doping on magnetic properties of Zn-Mn ferrite nanoparticles for magnetic induction hyperthermia // J. Magn. Magn. Mat. 2024. V. 591. P. 171724. https://doi.org/10.1016/j.jmmm.2024.171724
  24. Nikolaev E., Lysenko E., Surzhikov A., Bobuyok S. The Influence of Thermomagnetometric Measurement Conditions on the Recorded Curie Temperature of Cobalt-Zinc Ferrite // Emerging Trends in Materials Research and Manufacturing Processes. 2023. P. 1—10. https://doi.org/10.1007/978-3-031-38964-1_1
  25. Bobuyok S., Surzhikov A.P., Lysenko E.N., Nikolaev E.V., Salnikov V.D. Magnetic Properties of a Nickel—Zinc Ferrite Powder with Different Degrees of Dispersion // Phys. Met. Metall. 2024. V. 125. P. 355—362. https://doi.org/10.1134/S0031918X2460012X
  26. Bobuyok S.A., Surzhikov A.P., Nikolaev E.V., Vlasov V.A., Lysenko E.N. A Study of Magnetic Phase Transitions in Nickel Zinc Ferrites with Differing Structure // Russ. Phys. J. 2024. V. 67. No. 5. P. 675—683. https://doi.org/10.1007/s11182-024-03166-5
  27. El-Fadl A.A., Hassan A.M., Mahmoud M.H., Tatarchuk T., Yaremiy I.P., Gismelssed A.M., Ahmed M.A. Synthesis and magnetic properties of spinel Zn1−xNixFe2O4 (0.0 ≤ x ≤ 1.0) nanoparticles synthesized by microwave combustion method // J. Magn. Magn. Mat. 2019. V. 471. P. 192—199. https://doi.org/10.1016/j.jmmm.2018.09.074
  28. Anupama M.K., Srinatha N., Matteppanavar S., Angadi B., Sahoo B., Rudraswamy B. Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites // Ceram. Int. 2024. V. 44. № 5. P. 4946—4954. https://doi.org/10.1016/j.ceramint.2017.12.087
  29. Shipitsyn A.P., Nepomiluev A.M., Tiurnina A.E. Standartnye obraztsy temperatury fazovykh perekhodov (temperatury Kiuri) na osnove aliumeli, nikelia i silitsida zheleza // Etalony. Standartnye obraztsy. 2023. V. 19. No. 2. P. 35—46. EDN: PLSGBE. https://doi.org/10.20915/2077-1177-2023-19-2-35-46
  30. Li L.Z., Zhong X.X., Wang R., Tu X.Q., He L., Wang F.H. Effects of Ce substitution on the structural and electromagnetic properties of NiZn ferrite // J. Magn. Magn. Mat. 2019. V. 475. P. 1—4. https://doi.org/10.1016/j.jmmm.2018.11.110
  31. Mattei J.L., Guen E.L., Chevalier A., Tarot A.C. Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization // J. Magn. Magn. Mat. 2015. V. 374. P. 762—768. https://doi.org/10.1016/j.jmmm.2014.09.026
  32. Virden A.E., O’Grady K. Structure and magnetic properties of NiZn ferrite nanoparticles // J. Magn. Magn. Mat. 2005. V. 290—291. P. 868—870. https://doi.org/10.1016/j.jmmm.2004.11.398
  33. Nikolaev E.V., Lysenko E.N., Bobuyok S., Surzhikov A.P. Issledovanie magnitnykh svoistv nikel’-tsinkovykh ferritov termomagnitometricheskim metodom // Izvestiia vuzov. Fizika. 2023. V. 66. No. 5. P. 112. EDN: LJFASK.
  34. Ramesh S., Patro L.N., Dhanalakshmi B., Chandrasekhar B., Babu T.A., Naidu K.C.B., Rao B.P. Magnetic properties of Mn/Co substituted nano and bulk Ni–Zn ferrites: A comparative study // Mater. Chem. Phys. 2023. V. 306. P. 128055. https://doi.org/10.1016/j.matchemphys.2023.128055

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Measurement cell structure and external view of the Netzsch STA 449C Jupiter synchronous thermal analyser

Download (513KB)
3. Fig. 2. Block diagram and external view of the experimental bench for investigation of the temperature dependence of the initial magnetic permeability

Download (667KB)
4. Fig. 3. Block diagram and external view of the experimental stand for the study of electrical resistivity

Download (669KB)
5. Fig. 4. X-ray diffraction of nickel-zinc sample (▼ - reflections corresponding to Ni0.4Zn0.6Fe2O4 phase)

Download (137KB)
6. Fig. 5. TG and DTG dependences of a ferrite sample in a constant magnetic field obtained at the stage of heating (a) and cooling (b)

Download (337KB)
7. Fig. 6. Temperature dependence of the initial magnetic permeability of a ferrite toroid

Download (177KB)
8. Fig. 7. Temperature dependence of the specific electrical resistance of a ferrite tablet with a linear approximation (a) and a diagram of the residuals of the linear model (b)

Download (191KB)

Copyright (c) 2024 Russian Academy of Sciences