Functional State of the Cortical-Spinal Tract and Motor-Cognitive Reactions of Athletes Who Train Speed, Endurance and Coordination of Movement

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The aim of the work was to study the cortical-spinal excitability and conducting ability of the motor system using muscle potentials caused by magnetic stimulation of the motor cortex of the brain and spinal segments at the level of the C6–C7 and T12–L1 vertebrae in athletes of different specializations, and to correlate these parameters with psychophysiological characteristics. The researches revealed: 1) the stayers had the highest level of excitability of cortical neurons and motor neurons of the cervical and lumbar thickenings of the spinal cord, controlling the activity of shoulder, forearm, hip and shin muscles; the sprinters had the lowest level, while that of the basketball players’ was in between; 2) the sprinters and the basketball players displayed the highest conductive capacity of the corticospinal tract (CST), the stayers had the lowest one; 3) sprinters and basketball players had a higher rate of simple and complex sensorimotor reactions as an indicator of neuromotor (lability and mobility of the nervous system) and cognitive processes than stayers; 4) basketball players had the highest accuracy of complex sensorimotor reactions and the ability to anticipate the course of events as a sign of cognitive success than other athletes; 5) cortical-spinal excitability positively correlated with the accuracy of movements (in basketball players) and negatively with the conductive ability of the CST and the speed of simple and complex sensorimotor reactions (in sprinters and stayers). Athletes who train speed, endurance and coordination of movement have distinctive features and the relationship between the functional state of the CST and motor-cognitive reactions.

Sobre autores

O. Lanskaya

Velikie Luki State Academy of Physical Culture and Sports

Autor responsável pela correspondência
Email: lanskaya2012@yandex.ru
Russia, Velikie Luki

E. Lanskaya

Velikie Luki State Academy of Physical Culture and Sports

Email: lanskaya2012@yandex.ru
Russia, Velikie Luki

Bibliografia

  1. Clos P., Lepers R., Garnier Y.M. et al. Locomotor activities as a way of inducing neuroplasticity: insights from conventional approaches and perspectives on eccentric exercises // Eur. J. Appl. Physiol. 2021. V. 121. № 3. P. 697.
  2. Ланская О.В., Ланская Е.В. Физиологические механизмы пластичности моторной системы при занятиях различными видами спорта // Ульяновский медико-биологический журнал. 2018. № 4. С. 73.
  3. Moscatelli F., Messina A., Valenzano A. et al. Transcranial magnetic stimulation as a tool to investigate votor cortex excitability in sport // Brain Sci. 2021. V. 11. № 4. P. 432.
  4. Lockyer E.J., Nippard A.P., Kean K. et al. Corticospinal excitability to the biceps brachii is not different when arm cycling at a self-selected or fixed cadence // Brain Sci. 2019. V. 9. № 2. P. 41.
  5. Сологуб Е.Б., Таймазов В.А., Афанасьева И.А. Спортивная генетика: монография. СПб.: Изд-во Политехнического университета, 2017. 166 с.
  6. Фудин Н.А., Хадарцев А.А., Орлов В.А. Медико-биологические технологии в физической культуре и спорте: монография / Под ред. акад. РАН Григорьева А.И. М.: Спорт, Человек, 2018. 320 с.
  7. Городничев Р.М., Шляхтов В.Н. Физиология силы: монография. М.: Спорт, 2016. 232 с.
  8. Isaychev S.A., Chernorizov A.M., Korolev A.D. et al. The psychophysiological diagnostics of the functional state of the athlete. Preliminary data // Psychology in Russia: State of the Art. 2012. № 5. P. 244.
  9. Луткова Н.В., Макаров Ю.М., Минкин В.А. и др. Показатели психофизиологического состояния спортсменов игровиков в ситуациях с различной психоэмоциональной напряженностью // Ученые записки университета им. П.Ф. Лесгафта. 2019. Т. 12. № 178. С. 163.
  10. Ланская О.В., Сазонова Л.А., Лысов А.Д. Влияние тренировочных занятий реабилитационной направленности на психофизиологические функции спортсменов с травмами костно-мышечной системы // Адаптивная физическая культура. 2020. Т. 1. № 81. С. 43.
  11. Woods D.L., Wyma J.M., Yund E.W. et al. Factors influencing the latency of simple reaction time // Front. Hum. Neurosci. 2015. V. 9. P. 131.
  12. Dunovan K., Vich C., Clapp M. et al. Reward-driven changes in striatal pathway competition shape evidence evaluation in decision-making // PLoS Comput. Biol. 2019. V. 6. № 15. P. 5.
  13. Redfern M.S., Chambers A.J., Jennings J.R., Furman J.M. Sensory and motoric infuences on attention dynamics during standing balance recovery in young and older adults // Exp. Brain Res. 2017. V. 235. № 8. P. 2523.
  14. Merchant H., Zarco W., Prado L., Pérez O. Behavioral and neurophysiological aspects of target interception // Adv. Exp. Med. Biol. 2009. V. 629. P. 201.
  15. Irwin W.S. Simple reaction time: It is not what it used to be Reviewed work(s) // Am. J. Psychol. 2010. V. 123. № 1. P. 39.
  16. Славуцкая М.В., Карелин С.А., Котенев А.В. Негативные компоненты зрительных вызванных ответов в саккадической парадигме “GO/NOGO” у “быстрых” и “медленных” испытуемых // Физиология человека. 2022. Т. 48. № 1. С. 69. Slavutskaya M.V., Karelin S.A., Kotenev A.V. Negative components of visual evoked responses in the “GO/NOGO” saccadic paradigm in “fast” and “slow” subjects // Human Physiology. 2022. V. 48. № 1. P. 56.
  17. Мантрова И.Н. Методические руководство по психофизиологической и психологической диагностике. Иваново: Нейрософт, 2007. С. 20.
  18. Green H.J., Daub B., Houston M.E. et al. Human vastus lateralis and gastrocnemius muscles. A comparative histochemical and biochemical analysis // J. Neurol. Sci. 1981. V. 52. № 2–3. P. 201.
  19. Dongés S.C., Taylor J.L., Nuzzo J.L. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels // Exp. Physiol. 2019. V. 104. № 4. P. 546.
  20. Челноков А.А., Гладченко Д.А., Бучацкая И.Н., Пивоварова Е.А. Функциональные особенности спинального торможения у спортсменов разных видов спорта // Вестник Тверского государственного университета. Серия “Биология и экология”. 2019. Т. 3. № 55. С. 35.
  21. Trompetto C., Assini A., Buccolieri A. et al. Intracortical inhibition after paired transcranial magnetic stimulation depends on the current flow direction // Clin. Neurophysiol. 1999. V. 110. № 6. P. 1106.
  22. Kilburn K.H., Thornton J.C., Hanscom B. Population-based prediction equations for neurobehavioral tests // Arch. Environ. Health. 1998. V. 53. № 4. P. 257.
  23. Anstey K.J., Dear K., Christensen H., Jorm A.F. Biomarkers, health, lifestyle, and demographic variables as correlates of reaction time performance in early, middle, and late adult // Q. J. Exp. Psychol. A. 2005. V. 58. № 1. P. 5.
  24. Lerche V., Voss A. Speed-accuracy manipulations and diffusion modeling: Lack of discriminant validity of the manipulation or of the parameter estimates? // Behav. Res. Methods. 2018. V. 50. № 6. P. 2568.
  25. Dutilh G., Annis J., Brown S.D. et al. The quality of response time data inference: A blinded, collaborative assessment of the validity of cognitive models // Psychon. Bull. Rev. 2019. V. 26. № 4. P. 1051.
  26. Arnold N.R., Bröder A., Bayen U.J. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods // Psychol. Res. 2015. V. 79. № 5. P. 882.
  27. Свидерская Н.Е., Таратынова Г.В., Кожедуб Р.Г. ЭЭГ-корреляты изменения стратегии переработки информации при зрительном воображении // Журн. высш. нерв. деят. им. И.П. Павлова. 2005. Т. 55. № 5. С. 624.
  28. Woodley M.A., Nijenhuis T., Murphy R. Were the Victorians cleverer than us? The decline in general intelligence estimated from a metaanalysis of the slowing of simple reaction time // Intelligence. 2013. V. 41. P. 843.
  29. Hare T.A., Schultz W., Camerera C.F. et al. Transformation of stimulus value signals into motor commands during simple choice // PNAS. 2011. V. 108. № 44. P. 18120.
  30. Кошельков Д.А., Мачинская Р.И. Функциональное взаимодействие корковых зон в процессе выработки стратегии когнитивной деятельности. Анализ когерентности θ-ритма ЭЭГ // Физиология человека. 2010. Т. 36. № 6. С. 55. Koshelkov D.A., Machinskaya R.I. Functional coupling of cortical areas during problem solving task: Analysis of θ rhythm coherence // Human Physiology. 2010. V. 36. № 6. P. 665.
  31. Merchant H., Georgopoulos A.P. Neurophysiology of perceptual and motor aspects of interception // J. Neurophysiol. 2006. V. 95. № 1. P. 1.
  32. Ахметов И.И., Аксенов М.О., Аверясова Ю.О., Ализар Т.А. Генетический контроль развития скоростно-силовой выносливости гандболистов // Культура физическая и здоровье. 2021. Т. 3. № 79. С. 97.
  33. Семенова Е.А., Хабибова С.А., Борисов О.В. и др. Вариабельность структуры ДНК и состав мышечных волокон человека // Физиология человека. 2019. Т. 45. № 2. С. 128. Semenova E.A., Khabibova S.A., Borisov O.V. et al. The variability of DNA structure and muscles-fiber composition // Human Physiology. 2019. V. 45. № 2. P. 225.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (230KB)
3.

Baixar (194KB)
4.

Baixar (400KB)

Declaração de direitos autorais © О.В. Ланская, Е.В. Ланская, 2022