The Commonality of Overtraining Syndrome and Relative Energy Deficit Syndrome in Sports (REDs). Literature Review
- 作者: Gavrilova E.A.1, Churganov O.A.1, Pavlova O.Y.1, Bryntseva E.V.1, Rasskazova A.V.1, Gorkin M.V.1, Sarkisov A.K.1, Didora A.B.1, Shitova V.I.1
-
隶属关系:
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 50, 编号 6 (2024)
- 页面: 80-91
- 栏目: ОБЗОРЫ
- URL: https://permmedjournal.ru/0131-1646/article/view/664101
- DOI: https://doi.org/10.31857/S0131164624060095
- EDN: https://elibrary.ru/AFNAHV
- ID: 664101
如何引用文章
详细
The purpose of article is analysis of the literature comparing the clinical manifestations of overtraining syndrome (OTS) and relative energy deficiency syndrome in sports (REDs). The analysis of publications connected to OTS and REDs was carried out from two literature databases (PubMed and Elibrary.ru). The selection of works for analysis was carried out from 514 articles of two literature databases on the problem of the commonality of OTS and REDs, the connection between these syndromes, as well as issues of impaired availability of energy and nutrients in OTS. A comparative analysis of the clinical manifestations of the two syndromes and evidence of the hypothesis that the relative lack of energy in sports is one of the reasons (theories) for the development of overtraining syndrome in an athlete was carried out. A review and analysis of the literature showed that REDs can be considered a manifestation of OTS, and relative energy deficit in sports (REDs) is only one of the reasons (theories) for the development of overtraining syndrome in athletes, along with other theories (theory of cytokines, oxidative stress, fatigue of the central nervous system and etc.).
全文:

作者简介
E. Gavrilova
North-Western State Medical University named after I.I. Mechnikov
编辑信件的主要联系方式.
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
O. Churganov
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
O. Pavlova
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
E. Bryntseva
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
A. Rasskazova
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
M. Gorkin
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
A. Sarkisov
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
A. Didora
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
V. Shitova
North-Western State Medical University named after I.I. Mechnikov
Email: gavrilovaea@mail.ru
俄罗斯联邦, St. Petersburg
参考
- McKenzie R.T. The place of manipulation and corrective gymnastics in treatment // Cal. State J. Med. 1923. V. 21. № 11. P. 480.
- Carrard J., Rigort A.C., Appenzeller-Herzog C. et al. Diagnosing overtraining syndrome: A scoping review // Sports Health. 2022. V. 14. № 5. P. 665.
- Cadegiani F.A., da Silva P.H., Abrao T.C., Kater C.E. Diagnosis of overtraining syndrome: Results of the endocrine and metabolic responses on overtraining syndrome study: EROS-DIAGNOSIS // J. Sports Med. 2020. V. 2020. P. 3937819.
- Cadegiani F.A., Kater C.E. Eating, sleep, and social patterns as independent predictors of clinical, metabolic, and biochemical behaviors among elite male athletes: The EROS-PREDICTORS study // Front. Endocrinol. (Lausanne). 2020. V. 11. P. 414.
- Yeager K.K., Agostini R., Nattiv A., Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis // Med. Sci. Sports Exerc. 1993. V. 25. № 7. P. 775.
- Otis C.L., Drinkwater B., Johnson M. et al. American college of sports medicine position stand. The female athlete triad // Med. Sci. Sports Exerc. 1997. V. 29. № 5. P. i-ix.
- Mountjoy M., Sundgot-Borgen J., Burke L. et al. The IOC consensus statement: Beyond the female athlete triad-Relative Energy Deficiency in Sport (RED-S) // Br. J. Sports Med. 2014. V. 48. № 7. P. 491.
- Mountjoy M., Sundgot-Borgen J.K., Burke L.M. et al. IOC consensus statement on relative energy deficiency in sport (RED-S) // Br. J. Sports Med. 2018. V. 52. № 11. P. 687.
- Mountjoy M., Ackerman K.E., Bailey D.M. et al. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs) // Br. J. Sports Med. 2023. V. 57. № 17. P. 1073.
- Stellingwerff T., Heikura I.A., Meeusen R. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared pathways, symptoms and complexities // Sports Med. 2021. V. 51. № 11. P. 2251.
- Weakley J., Halson S.L., Mujika I. Overtraining Syndrome symptoms and diagnosis in athletes: where is the research? A systematic review // Int. J. Sports Physiol. Perform. 2022. V. 17. № 5. P. 675.
- Colangelo J., Smith A., Buadze A. et al. Mental health disorders in ultra endurance athletes per ICD-11 classifications: A review of an overlooked community in sports psychiatry // Sports (Basel). 2023. V. 11. № 3. P. 52.
- Baker C., Hunt J., Piasecki J., Hough J. Lymphocyte and dendritic cell response to a period of intensified training in young healthy humans and rodents: A systematic review and meta-analysis // Front. Physiol. 2022. V. 13. P. 998925.
- Vrijkotte S., Roelands B., Pattyn N., Meeusen R. The Overtraining Syndrome in soldiers: Insights from the sports domain // Mil. Med. 2019. V. 184. № 5–6. P. 192.
- Luti S., Modesti A., Modesti P.A. Inflammation, peripheral signals and redox homeostasis in athletes who practice different sports // Antioxidants (Basel). 2020. V. 9. № 11. P. 1065.
- Magherini F., Fiaschi T., Marzocchini R. et al. Oxidative stress in exercise training: the involvement of inflammation and peripheral signals // Free Radic. Res. 2019. V. 53. № 11–12. P. 1155.
- Grandou C., Wallace L., Impellizzeri F.M. et al. Overtraining in resistance exercise: An exploratory systematic review and methodological appraisal of the literature // Sports Med. 2020. V. 50. № 4. P. 815.
- Mazaheri R., Schmied C., Niederseer D., Guazzi M. Cardiopulmonary exercise test parameters in athletic population: A review // J. Clin. Med. 2021. V. 10. № 21. P. 5073.
- Hopen S.R. Intrafasciomembranal fluid pressure: A novel approach to the etiology of myalgias // Cureus. 2022. V. 14. № 8. P. е28475.
- Armstrong L.E., Bergeron M.F., Lee E.C. et al. Overtraining Syndrome as a complex systems phenomenon // Front. Netw. Physiol. 2022. V. 1. P. 794392.
- Hackney A.C. Hypogonadism in exercising males: Dysfunction or adaptive-regulatory adjustment? // Front. Endocrinol. (Lausanne). 2020. V. 11. P. 11.
- Madzar T., Masina T., Zaja R. et al. Overtraining Syndrome as a risk factor for bone stress injuries among paralympic athletes // Medicina (Kaunas). 2023. V. 60. № 1. P. 52.
- la Torre M.E., Monda A., Messina A. et al. The potential role of nutrition in Overtraining Syndrome: A narrative review // Nutrients. 2023. V. 15. № 23. P. 4916.
- Cheng A.J., Jude B., Lanner J.T. Intramuscular mechanisms of overtraining // Redox. Biol. 2020. V. 35. P. 101480.
- Brun J.F. Exercise hemorheology as a three acts play with metabolic actors: is it of clinical relevance? // Clin. Hemorheol. Microcirc. 2002. V. 26. № 3. P. 155.
- Mao Y.H., Wang M., Yuan Y. et al. Konjac glucomannan counteracted the side effects of excessive exercise on gut microbiome, endurance, and strength in an overtraining mice model // Nutrients. 2023. V. 15. № 19. P. 4206.
- Hou P., Zhou X., Yu L. et al. Exhaustive exercise induces gastrointestinal syndrome through reduced ILC3 and IL-22 in mouse model // Med. Sci. Sports Exerc. 2020. V. 52. № 8. P. 1710.
- Nicoll J.X., Hatfield D.L., Melanson K.J., Nasin C.S. Thyroid hormones and commonly cited symptoms of overtraining in collegiate female endurance runners // Eur. J. Appl. Physiol. 2018. V. 118. № 1. P. 65.
- Melchiorri G., Viero V., Sorge R. et al. Body composition analysis to study long-term training effects in elite male water polo athletes // J. Sports Med. Phys. Fitness. 2018. V. 58. № 9. P. 1269.
- Coelho A.R., Cardoso G., Brito M.E. et al. The female athlete triad/Relative Energy Deficiency in Sports (RED-S) // Rev. Bras. Ginecol. Obstet. 2021. V. 43. № 5. P. 395.
- Vardardottir B., Gudmundsdottir S.L., Olafsdottir A.S. Health and performance consequences of Relative Energy Deficiency in Sport (REDs) // Laeknabladid. 2020. V. 106. № 9. P. 406.
- Gould R.J., Ridout A.J., Newton J.L. Relative Energy Deficiency in Sport (RED-S) in adolescents – A practical review // Int. J. Sports Med. 2023. V. 44. № 4. P. 236.
- Sim A., Burns S. Review: Questionnaires as measures for low energy availability (LEA) and relative energy deficiency in sport (RED-S) in athletes // J. Eat. Disord. 2021. V. 9. № 1. P. 41.
- Logue D., Madigan S., Melin A. et al. Low energy availability in athletes 2020: An updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance // Nutrients. 2020. V. 12. № 3. P. 835.
- Maya J., Misra M. The female athlete triad: review of current literature // Curr. Opin. Endocrinol. Diabetes Obes. V. 29. № 1. P. 44.
- Lodge M., Ward-Ritacco C., Melanson K. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in female endurance athletes: A narrative review // Nutrients. 2023. V. 15. № 20. P. 4457.
- Costa T., Borba V., Correa P., Moreira C. Stress fractures // Arch. Endocrinol. Metab. 2022. V. 66. № 5. P. 765.
- Heikura I., Stellingwerff T., Areta J. Low energy availability in female athletes: From the lab to the field // Eur. J. Sport Sci. V. 22. № 5. P. 709.
- Warden S.J., Edwards W.B., Willy R.W. Preventing bone stress injuries in runners with optimal workload // Curr. Osteoporos. Rep. 2021. V. 19. № 3. P. 298.
- Areta J.L, Taylor H.L., Koehler K. Low energy availability: history, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males // Eur. J. Appl. Physiol. 2021. V. 121. № 1. P. 1.
- Jagim A.R., Fields J., Magee M.K. et al. Contributing factors to low energy availability in female athletes: A narrative review of energy availability, training demands, nutrition barriers, body image, and disordered eating // Nutrients. 2022. V. 14. № 5. P. 986.
- Jonvik K.L., Vardardottir B., Broad E. How do we assess energy availability and RED-S risk factors in para athletes? // Nutrients. 2022. V. 14. № 5. P. 1068.
- Ackerman K.E., Rogers M.A., Heikura I.A. et al. Methodology for studying Relative Energy Deficiency in Sport (REDs): A narrative review by a subgroup of the International Olympic Committee (IOC) consensus on REDs // Br. J. Sports Med. 2023. V. 57. № 17. P. 1136.
- O'Leary T.J., Wardle S.L., Greeves J.P. Energy deficiency in soldiers: The risk of the athlete triad and relative energy deficiency in sport syndromes in the military // Front. Nutr. 2020. V. 7. P. 142.
- Mathisen T.F., Ackland T., Burke L.M. et al. Best practice recommendations for body composition considerations in sport to reduce health and performance risks: a critical review, original survey and expert opinion by a subgroup of the IOC consensus on Relative Energy Deficiency in Sport (REDs) // Br. J. Sports Med. 2023. V. 57. № 17. P. 1148.
- Grabia M., Perkowski J., Socha K., Markiewicz-Żukowska R. Female athlete triad and Relative Energy Deficiency in Sport (REDs): Nutritional management // Nutrients. 2024. V. 16. № 3. P. 359.
- Langan-Evans C., Reale R., Sullivan J., Martin D. Nutritional considerations for female athletes in weight category sports // Eur. J. Sport Sci. 2022. V. 22. № 5. P. 720.
- De Souza M.J., Koltun K.J., Williams N.I. The role of energy availability in reproductive function in the female athlete triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes // Sports Med. 2019. V. 49. № 2. P. 125.
- Hutson M.J., O'Donnell E., Brooke-Wavell K. et al. Effects of low energy availability on bone health in endurance athletes and high-impact exercise as a potential countermeasure: A narrative review // Sports Med. 2021. V. 51. № 3. P. 391.
- Watkins R.A., Guillen R.V. Primary care considerations for the pediatric endurance athlete // Curr. Rev. Musculoskelet. Med. 2024. V. 17. № 3. P. 76.
- Hamstra-Wright K.L., Huxel Bliven K.C., Napier C. Training load capacity, cumulative risk, and bone stress injuries: A narrative review of a holistic approach // Front. Sports Act. Living. 2021. V. 3. P. 665683.
- Cadegiani F.A., Kater C.E. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: Results of the EROS study (EROS-PROFILE) // J. Sports Sci. 2018. V. 36. № 16. Р. 1902.
- Rogero M.M., Mendes R.R., Tirapegui J. Aspectos neuroendócrinos e nutricionais em atletas com overtraining (Neuroendocrine and nutritional aspects of overtraining) // Arq. Bras. Endocrinol. Metabol. 2005. V. 49. № 3. Р.359.
- Zaryski C., Smith D.J. Training principles and issues for ultra-endurance athlete // Curr. Sports Med. Rep. 2005. V. 4. № 3. Р. 165.
- Walsh N.P., Blannin A.K., Robson P.J., Gleeson M. Glutamine, exercise and immune function. Links and possible mechanisms // Sports Med. 1998. V. 26. № 3. Р. 177.
- Talvas J., Norgieux C., Burban E. еt al. Vitamin D deficiency contributes to overtraining syndrome in excessive trained C57BL/6 mice // Scand. J. Med. Sci. Sports. 2023. V. 33. № 11. P. 2149.
- Cupka M., Sedliak M. Hungry runners – low energy availability in male endurance athletes and its impact on performance and testosterone: Mini-review // Eur. J. Transl. Myol. 2023. V. 33. № 2. P. 11104.
- Varlet-Marie E., Maso F., Lac G., Brun J.F. Hemorheological disturbances in the overtraining syndrome // Clin. Hemorheol. Microcirc. 2004. V. 30. № 3–4. P. 211.
- Solomon M.L., Briskin S.M., Sabatina N., Steinhoff J.E. The pediatric endurance athlete // Curr. Sports Med. Rep. 2017. V. 16. № 6. P. 428.
- Gleeson M. Biochemical and immunological markers of overtraining // J. Sports Sci. Med. 2002. V. 1. № 2. P. 31.
- Gavrilova E.A., Churganov O.A., Belodedova M.D. et al. Sudden cardiac death in sport: Global statistics analysis // Theory and Practice of Physical Culture. 2021. № 5. P. 31.
- Solomon M.L., Weiss Kelly A.K. Approach to the underperforming athlete // Pediatr. Ann. 2016. V. 45. № 3. P. e91.
- Indirli R., Lanzi V., Mantovani G. et al. Bone health in functional hypothalamic amenorrhea: What the endocrinologist needs to know // Front. Endocrinol. (Lausanne). 2022. V. 13. P. 946695.
- Maïmoun L., Paris F., Coste O., Sultan C. Sport intensif et troubles du cycle chez la jeune femme: Retentissement sur la masse osseus (Intensive training and menstrual disorders in young female: Impact on bone mass) // Gynecol. Obstet. Fertil. 2016. V. 44. № 11. P. 659.
- Lania A., Gianotti L., Gagliardi I. et al. Functional hypothalamic and drug-induced amenorrhea: An overview // J. Endocrinol. Invest. 2019. V. 42. № 9. P. 1001.
- Keizer H.A., Rogol A.D. Physical exercise and menstrual cycle alterations. What are the mechanisms? // Sports Med. 1990. V. 10. № 4. P. 218.
- Grandys M., Majerczak J., Frolow M. et al. Training-induced impairment of endothelial function in track and field female athletes // Sci. Rep. 2023. V. 13. № 1. P. 3502.
- Cannavò S., Curtò L., Trimarchi F. Exercise-related female reproductive dysfunction // J. Endocrinol. Invest. 2001. V. 24. № 10. P. 823.
- Maïmoun L., Georgopoulos N.A., Sultan C. Endocrine disorders in adolescent and young female athletes: Impact on growth, menstrual cycles, and bone mass acquisition // J. Clin. Endocrinol. Metab. 2014. V. 99. № 11. P. 4037.
- Lambert B.S., Cain M.T., Heimdal T. et al. Physiological parameters of bone health in elite ballet dancers // Med. Sci. Sports Exerc. 2020. V. 52. № 8. P. 1668.
- Hackney A.C., Hooper D.R. Low testosterone: Androgen deficiency, endurance exercise training, and competitive performance // Physiol. Int. 2019. V. 106. № 4. Р. 379.
- Fry A.C., Kraemer W.J., Ramsey L.T. Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining // J. Appl. Physiol. 1998. V. 85. № 6. Р. 2352.
- Hooper D.R., Kraemer W.J., Stearns R.L. et al. Evidence of the Exercise-Hypogonadal Male Condition at the 2011 Kona Ironman World Championships // Int. J. Sports Physiol. Perform. 2019. V. 14. № 2. P. 170.
- Hooper D.R., Kraemer W.J., Stearns R.L. et al. Evidence of the exercise-hypogonadal male condition at the 2011 Kona Ironman World Championships // Int. J. Sports Physiol. Perform. 2019. V. 14. № 2. Р. 170.
- Roberts A.C., McClure R.D., Weiner R.I., Brooks G.A. Overtraining affects male reproductive status // Fertil. Steril. 1993. V. 60. № 4. Р. 686.
- Roberts A.C., McClure R.D., Weiner R.I., Brooks G.A. Overtraining affects male reproductive status // Fertil. Steril. 1993. V. 60. № 4. Р. 686.
- Miyamoto M., Shibuya K. Sleep duration has a limited impact on the prevalence of menstrual irregularities in athletes: A cross-sectional study // Peer. J. 2024. V. 12. P. e16976.
- Bezuglov E.N. Relative energy deficiency syndrome in sports: A guide for doctors. Moscow: GEOTAR-Media, 2023. 160 p.
- Brenner J.S., Watson A. Overuse Injuries, overtraining, and burnout in young athletes // Pediatrics. 2024. V. 153. № 2. P. e2023065129.
- Stellingwerff T., Heikura I.A., Meeusen R. et al. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared pathways, symptoms and complexities // Sports Med. 2021. V. 51. № 11. Р. 2251.
补充文件
