Regulation of Gene Expression by the MYC Transcription Factor Network during Exercise

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results obtained in recent years on numerous functions of the MYC protein convincingly indicate that MYC overexpression induced by physical activity occurs at the transcriptional and epigenetic levels with the participation of low molecular weight metabolites formed during the enhancement of intermediate metabolism. The current hypothesis proposes that MYC network of transcription factors may account substantially for the exercise-induced adaptive changes in muscle and other vital organs through changes in lactate dynamics. This review presents the MYC transcription factor network that is involved in cell cycle regulation, growth, proliferation, and cell metabolism.

About the authors

I. V. Astratenkova

Saint-Petersburg State University

Author for correspondence.
Email: astratenkova@mail.ru
Russia, St. Petersburg

N. D. Golberg

Saint-Petersburg Research Institute of Physical Culture

Email: astratenkova@mail.ru
Russia, St. Petersburg

V. A. Rogozkin

Saint-Petersburg Research Institute of Physical Culture

Email: astratenkova@mail.ru
Russia, St. Petersburg

References

  1. Carroll P.A., Freie B.W., Mathsearaja H., Eisenman R.N. The MYC transcription factor network: balancing metabolism, proliferation, and oncogenesis // Front. Med. 2018. V. 12. № 4. P. 412.
  2. Conacci-Sorrell M., McFerrin L., Eiesenman R.N. An overview of MYC and its interactome // Cold Spring Harb. Perspect. 2014. V. 4. № 1. P. a014357.
  3. Thomas L.R., Wang Q., Grieb B.C. et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC // Mol. Cell. 2015. V. 58. № 3. P. 440.
  4. Kotekar A., Singh A.K., Devaiah B.N. BRD4 and MYC: power couple in transcription and disease // FEBS J. 2022. https://doi.org/10.1111/febs.16580
  5. Devaiah B.N., Mu J., Akman B. et al. MYC protein stability is negatively regulated by BRD4 // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 24. P. 13457.
  6. Imran A., Moyer B.S., Kalina D. et al. Convergent alterations of protein hub produce divergent effects within a binding site // ACS Chem. Biol. 2022. V. 17. № 6. P. 1586.
  7. Farrell A.S., Sears R.S. MYC degradation // Cold Spring Harb. Perspect. 2014. V. 4. № 3. P. a014365.
  8. Chen Y., Sun X.X., Sears R.C., Dai M.S. Writing and erasing MYC ubiquitination and SUMOylation // Genes Dis. 2019. V. 6. № 4. P. 359.
  9. Das S.K., Lewis B.A., Levens D. MYC: a complex problem // Trends Cell. Biol. 2022. V. 33. № 3. P. 235.
  10. Greib B.C., Eischen C.M. MTBP and MYC: a dynamic duo in proliferation, cancer, and aging // Biology (Basel). 2022. V. 11. № 6. P. 881.
  11. Endres T., Solvie D., Heidelberger J.B. et al. Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters // Mol. Cell. 2021. V. 81. № 4. P. 830.
  12. Das S.K., Kuzin V., Cameron D.P. et al. MYC assembles and stimulates topoisomerases 1 and 2 in a topoisome // Mol. Cell. 2022. V. 82. № 1. P. 140.
  13. Nie Z., Guo C., Das S.K. et al. Dissecting transcriptional amplification by MYC // Elife. 2020. V. 9. P. e52483.
  14. Patange S., Ball D.A., Wan Y. et al. MYC amplifies gene expression through global changes in transcription factor dynamics // Cell Rep. 2022. V. 38. № 4. P. 110292.
  15. Luo W., Chen J., Li L. et al. c-MYC inhibits myoblast differentiation and promotes myoblast proliferation and muscle fiber hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs // Cell Death. Differ. 2019. V. 26. № 3. P. 426.
  16. Gohil K., Brooks G.A. Exercise tames the wild side of the MYC network: a hypothesis // Am. J. Physiol. Endocrinol. Metab. 2012. V. 303. № 1. P. E18.
  17. Jolma A., Yin Y., Nitta K.R. et al. DNA-dependent formation of transcription factor pairs alters their binding specificity // Nature. 2015. V. 527. № 7578. P. 384.
  18. Morgunova E., Taipale J. Structural perspective of cooperative transcription factor binding // Curr. Open Struct. Biol. 2017. V. 47. P. 1.
  19. Brooks G.A., Arevalo J.A., Osmond A.D. et al. Lactate in contemporary biology: a phoenix risen // J. Physiol. 2022. V. 600. № 5. P. 1229.
  20. Brooks G.A., Curl C.C., Leija R.G. et al. Tracing the lactate shuttle to the mitochondrial reticulum // Exp. Mol. Med. 2022. V. 54. № 9. P. 1332.
  21. Xue X., Liu B., Hu J. et al. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule // Nutr. Metab. (Lond). 2022. V. 19. № 1. P. 52.
  22. Von Walden F., Rea M., Mobley C.B. et al. The myonuclear, DNA methylome in response to an acute hypertrophic stimulus // Epigenetics. 2020. V. 15. № 11. P. 1151.
  23. Mori T., Ato S., Knudsen J.R. et al. c-MYC overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle // Am. J. Physiol. Endocrinol. Metab. 2021. V. 321. № 4. P. E551.
  24. Murach K.A., Liu Z., Jude B. et al. Multi-transcriptome analysis following an acute skeletal muscle growth stimulus yields tools for discerning global and MYC regulatory networks // J. Biol. Chem. 2022. V. 298. № 11. P. 102515.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (138KB)
3.

Download (115KB)
4.

Download (610KB)
5.

Download (319KB)
6.

Download (279KB)

Copyright (c) 2023 И.В. Астратенкова, Н.Д. Гольберг, В.А. Рогозкин