Non-agglomerated oligonucleotide-containing nanocomposites based on titanium dioxide nanoparticles
- 作者: Repkova M.N.1, Mazurkov O.Y.2, Filippova E.I.2, Mazurkova N.A.2, Poletaeva Y.E.1, Ryabchikova E.I.1, Zarytova B.F.1, Levina A.S.1
-
隶属关系:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
- FBRI State Research Center of Virology and Biotechnology “Vector”
- 期: 卷 50, 编号 6 (2024)
- 页面: 862-870
- 栏目: Articles
- URL: https://permmedjournal.ru/0132-3423/article/view/670775
- DOI: https://doi.org/10.31857/S0132342324060128
- EDN: https://elibrary.ru/NDZVCX
- ID: 670775
如何引用文章
详细
Stability and monodispersity are important properties of nanoparticles and nanocomposites that ensure the reliability of their application in biological systems and the reproducibility of results. The preparation of non-agglomerated oligonucleotide-containing nanocomposites based on anatase titanium dioxide nanoparticles (Ans~ODN) is the aim of this work. The immobilization of oligodeoxynucleotides on TiO2 nanoparticles has been studied by the dynamic light scattering and transmission electron microscopy. The antiviral activity of the synthesized samples has been performed on VERO cells infected with herpes simplex virus of the first type. The effect of NaCl on the agglomeration of nanoparticles and nanocomposites in aqueous solutions has been studied. The presence of NaCl leads to agglomeration of nanoparticles and nanocomposites. It has been shown that nanocomposites are formed in an aqueous solution in the absence of NaCl. A comparison of the biological activity of nanocomposites prepared in water and saline solution has been carried out with an example of inhibition of replication of the herpes simplex virus of the first type in the cell culture. The studied nanocomposite, regardless of the preparation method (in water or 0.9% NaCl), inhibited virus replication by 4.5 orders of magnitude when used 1 day after preparation. After 10 days of storage, the activity of the sample prepared in saline solution was two orders of magnitude lower than that of the active sample prepared in water. We have developed the method for the preparation of non-agglomerated oligonucleotide-containing nanocomposites based on anatase nanoparticles and demonstrated their potential use for the study of their biological activity. Unlike nanocomposites prepared in the presence of salt, which lose their efficacy during storage, nanocomposites that are not prone to agglomeration can be obtained in water for future use.
全文:

作者简介
M. Repkova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
Email: asl1032@yandex.ru
俄罗斯联邦, prosp. Lavrent’eva 8, Novosibirsk, 630090
O. Mazurkov
FBRI State Research Center of Virology and Biotechnology “Vector”
Email: asl1032@yandex.ru
俄罗斯联邦, Koltsovo, Novosibirsk region, 630559
E. Filippova
FBRI State Research Center of Virology and Biotechnology “Vector”
Email: asl1032@yandex.ru
俄罗斯联邦, Koltsovo, Novosibirsk region, 630559
N. Mazurkova
FBRI State Research Center of Virology and Biotechnology “Vector”
Email: asl1032@yandex.ru
俄罗斯联邦, Koltsovo, Novosibirsk region, 630559
Yu. Poletaeva
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
Email: asl1032@yandex.ru
俄罗斯联邦, prosp. Lavrent’eva 8, Novosibirsk, 630090
E. Ryabchikova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
Email: asl1032@yandex.ru
俄罗斯联邦, prosp. Lavrent’eva 8, Novosibirsk, 630090
B. Zarytova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
Email: asl1032@yandex.ru
俄罗斯联邦, prosp. Lavrent’eva 8, Novosibirsk, 630090
A. Levina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: asl1032@yandex.ru
俄罗斯联邦, prosp. Lavrent’eva 8, Novosibirsk, 630090
参考
- Ming X, Laing B. // Adv. Drug. Deliv. Rev. 2015. V. 87. P. 81–89. https://doi.org/10.1016/j.addr.2015.02.002
- Samanta, A. Medintz I.L. // Nanoscale. 2016. V. 17. P. 9037–9095. https://doi.org/10.1039/c5nr08465b
- Weng Y., Huang Q., Li C., Yang Y., Wang X., Yu J., Huang Y., Liang X.J. // Mol. Ther. Nucleic Acids. 2020. V. 19. P. 581–601. https://doi.org/10.1016/j.omtn.2019.12.004
- Zhang X., Wang F., Liu B., Kelly E.Y., Servos M.R., Liu J. // Langmuir. 2014. V. 30. P. 839–845. https://doi.org/10.1021/la404633p
- Haghighi F.H., Mercurio M., Cerra S., Salamone T.A., Bianymotlagh R., Palocci C., Spica V.R., Fratoddi I. // J. Mater. Chem. B. 2023. V. 11. P. 2334–2366. https://doi.org/10.1039/d2tb02576k
- Thurn K.T., Arora H., Paunesku T., Wu A., Brown E.M., Doty C., Kremer J., Woloschak G. // Nanomedicine. 2011. V. 7. P. 123–130. https://doi.org/10.1016/j.nano.2010.09.004
- Челобанов Б.П., Репкова М.Н., Байбородин С.И., Рябчикова Е.И., Стеценко Д.А. // Мол. биол. 2017. Т. 51. С. 695–704. https://doi.org/10.1134/S0026893317050065
- Beutner R., Michael J., Schwenzer B., Scharnwebe D. // J. R. Soc. Interface. 2010. V. 7. S93–S105. https://doi.org/10.1098/rsif.2009.0418.focus
- Levina A., Repkova M., Shikina N., Ismagilov Z., Kupryushkin M., Pavlova A., Mazurkova N., Pyshnyi D., Zarytova V. // Eur. J. Pharm. Biopharm. 2021. V. 162. P. 92–98. https://doi.org/10.1016/j.ejpb.2021.03.006
- Thurn K.T., Paunesku T., Wu A., Brown E.M.B., Lai B., Vogt S., Maser J., Aslam M., Dravid V., Bergan R., Woloschak G.E. // Small. 2009. V. 5. P. 1318–1325. https://doi.org/10.1002/smll.200801458
- Vollath D. // Beilstein J. Nanotechnol. 2020. V. 11. P. 854–857. https://doi.org/10.3762/bjnano.11.70
- Li G., Lv L., Fan H., Ma J., Li Y., Wan Y., Zhao X.S. // J. Coll. Interface Sci. 2010. V. 348. P. 342–347. https://doi.org/10.1016/j.jcis.2010.04.045
- Pellegrino F., Pellutiè L., Pellutiè L., Sordello F., Sordello F., Minero C., Ortel E., Hodoroaba V.D., Maurino V. // Appl. Catal. B Environ. 2017. V. 216. P. 80–87. https://doi.org/10.1016/j.apcatb.2017.05.046
- Kätelhön E., Sokolov S.V., Bartlett T.R., Compton R.G. // Chemphyschem. 2017. V. 18. P. 51–54. https://doi.org/10.1002/cphc.201601130
- Levina A., Ismagilov Z., Repkova M., Shatskaya N., Shikina N., Tusikov F., Zarytova V. // J. Nanosci. Nanotechnol. 2012. V. 12. P. 1812–1820. https://doi.org/10.1166/jnn.2012.5190
- Levina A.S., Ismagilov Z.R., Repkova M.N., Shikina N.V., Bayborodin C.I., Shatskaya N.V., Zagrebelny S.N., Zarytova V.F. // Russ. J. Bioorg. Chem. 2013. V. 39. P. 87–98. https://doi.org/10.1134/S1068162013010068
- Levina A.S., Repkova M.N., Ismagilov Z.R., Shikina N.V., Mazurkova N.A., Zarytova V.F. // Russ. J. Bioorg. Chem. 2014. V. 40. P. 196–202. https://doi.org/10.1134/s1068162014020095
- Repkova M.N., Levina A.S., Chelobanov B.P., Mazurkova N.A., Ismagilov Z.R., N/V/ Shatskaya, S.V. Baiborodin, Filippova E.I., Mazurkova N.A., Zarytova V.F. // Int. J. Antimicrob. Agents. 2017. V. 49. P. 703–708. https://doi.org/10.1016/j.ijantimicag.2017.01.026
- Levina A.S., Repkova M.N., Bessudnova E.V., Filippova E.I., Zarytova V.F. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1166–1173. https://doi.org/10.3762/bjnano.7.108
- Repkova M.N., Levina A.S., Ismagilov Z.R., Mazurkova N.A., Mazurkov O.Ju., Zarytova V.F. // Nucleic Acid Ther. 2021. V. 31. P. 436–442. https://doi.org/10.1089/nat.2021.0061
- Repkova M.N., Levina A.S., Seryapina A.A., Shikina N.V., Bessudnova E.V., Zarytova V.F., Markel A.L. // Biochemistry (Moscow). 2017. V. 82. P. 454– 457. https://doi.org/10.1134/S000629791704006X
- Люблинский С.Л., Люблинская И.Н., Колоскова Е.М., Азизов А.М., Каркищенко В.Н., Нестеров М.С., Капцов А.В., Агельдинов Р.А., Герасимов В.Н., Гриненко Д.В. // Биомедицина. 2021. T. 17. С. 18–37. https://doi.org/10.33647/2074-5982-17-4-18-37
- Shih Y.H., Liu W.S., Su Y.F. // Env. Toxicol. Chem. 2012. V. 31. P. 1693–1698. https://doi.org/10.1002/etc.1898
- Patel S., Patel P., Bakshi S.R. // Cytotechnology. 2017. V. 69. P. 245–263. https://doi.org/10.1007/s10616-016-0054-3
- Theissmann R., Drury Ch., Rohe M., Koch T., Winkler J., Pikal P. // Beilstein J. Nanotechnol. 2024. V. 15. P. 317–332.
- Levina A.S., Repkova M.N., Zarytova V.F. // Russ. J. Bioorg. Chem. 2023. V. 49. P. 1243–1262. https://doi.org/10.1134/S1068162023060067
- Levina A.S., Mikhaleva E.A., Repkova M.N., Zarytova V.F. // Russ. J. Bioorg. Chem. 2023. V. 34. P. 89–95. https://doi.org/10.1134/s1068162008010111
- Mahy B.W.J., Kangro H.O. // Virology Methods Manual. London: Academic Press, 1996. 374 p.
补充文件
